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housing unit to a more aggregate neighborhood depiction (2, 3) 
and have confirmed the inherent risk of aggregating household data 
into the zones traditionally exhibited in four-step travel demand 
models (4). To avoid this modeling pitfall, travel behavior research 
has continued to advance in the direction of using activity-based travel  
demand models that rely extensively on disaggregate built environ-
ment and socioeconomic measures to properly capture their effects 
on observed household travel (5, 6). Understanding these connec-
tions has become ever more important at the same time regional 
travel demand models increasingly include nonmotorized travel (7).

Although the use of disaggregate data pertaining to the household 
and its surrounding built environment will ultimately improve travel 
demand modeling, the release of data that may be geographically 
referenced to an individual household raises important concerns about 
the preservation of survey respondent confidentiality. Although largely 
absent in travel behavior research, the negotiation of this compli-
cation, centered on protecting respondent privacy while ensuring 
the possibility of valid geographical analyses, has received recent 
attention in public health research (8), which has sought to address 
this conflict by applying geographic perturbation methods (9). The 
impetus behind using geographic perturbation approaches has been 
to spatially modify the precise household location to an extent suf-
ficient for these sensitive data to be made available to external users 
(10). Applying a geographic perturbation method seeks to minimize 
the disclosure risk or breach in confidentiality that may permit a 
user of the spatial data source to discern either the identity of a 
respondent or any associated attribute observed under a confidentiality 
pledge (11).

These disclosure risks must be weighted by the data custodian 
against the complementary concept of data utility, which defines 
the retained value of the geographically altered data source to the 
external user. For these data to be disseminated to a wider audience, the 
introduction of spatial error must be minimized by the data custodian. 
This notion of spatial error minimization is important especially 
to travel demand modelers interested in the relationships between 
nonmotorized travel and the built environment. Walk trips often 
occur over short distances (e.g., ½ mi). As such, the geographic 
perturbation of a trip origin (e.g., household) beyond this threshold 
distance may significantly limit an improved understanding of this 
small-scale connection between nonmotorized travel and the built 
environment. In general, decreasing the level of disclosure risk by 
applying a more stringent geographic perturbation method will also 
decrease the accuracy of inferences obtainable from the perturbed 
data set (12).
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Travel demand models have advanced from zone-based methods to favor 
activity-based approaches that require more disaggregate data sources. 
Household travel surveys gather disaggregate data that may be used to 
inform advanced travel demand models better and also to improve the 
understanding of how nonmotorized travel is influenced by a house-
hold’s surrounding built environment. However, the release of these 
disaggregate data is often limited by a confidentiality pledge between 
the household participant and survey administrator. Concerns about 
the disclosure risk of survey respondents to household travel surveys 
must be addressed before these household-level data may be released at 
their disaggregate geography. In an effort to honor this confidentiality 
pledge and facilitate the dissemination of valuable travel survey data, 
this research (a) reviews geographical perturbation methods that seek  
to protect respondent confidentiality; (b) outlines a procedure for imple-
menting one promising practice, referred to as the “doughnut masking 
technique”; and (c) demonstrates a proof of concept for this technique 
on 10 respondents to a household activity travel survey in the Portland, 
Oregon, metropolitan region. To examine the balance between limiting 
disclosure risk and preserving data utility, four trials were conducted 
and measures of household anonymity and built environment variation 
were analyzed for the relocated household in relation to its actual location. 
Results of this demonstration revealed that increases in the potential 
displacement distance of a geographically perturbed household generally 
reduced disclosure risk and also limited data utility.

A household travel survey provides a rich amount of disaggregate 
data to researchers, but the release of these valuable data is often 
limited by a confidentiality agreement between the survey respon-
dent and administrator. The inability to release such data has been an 
obstacle to an improved understanding of linkages between travel 
behavior and the built environment because these disaggregate 
data are most appropriate for study as they avert the problem of an 
ecological fallacy (1). Accordingly, previous studies examining the 
relationship of household travel patterns to the built environment 
have questioned past inferential comparisons of the disaggregate  
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Although this trade-off between disclosure risk and data utility has 
been recognized, no consensus on a geographic perturbation method 
that does not affectedly limit any spatial analysis to visualize and 
disseminate confidential data has been reached (13). In contribution 
to this methodological debate, this research provides an overview of 
geographic perturbation methods in practice and details an approach  
toward using one promising technique to enable a wider dissemination 
of household travel survey data. The methodological overview is 
then followed by a proof of concept of this innovative technique on  
a limited number of respondents to the 2010 Oregon Household 
Activity Survey in the Portland metropolitan region, chosen accord-
ing to the diversity in surrounding built environments, and concludes 
with a discussion of potential directions for future applications of 
this technique.

Methodological Background

Traditionally, the most common geographic perturbation method 
has been to conceal individual records through a process of aggre-
gation through either zonal or point aggregation (10). The former 
technique enumerates all households in a predefined administrative 
entity; whereas, the latter technique allocates many households to 
a single location (9). The use of zonal aggregation has been a long-
standing practice in conventional travel demand modeling and has 
consequently resulted in introducing biases related to ecological 
correlation, limited transferability, data inefficiency, policy insensi-
tivity, and a lack of behavioral fidelity (14). Point aggregation has 
often served as a counterpart to zonal aggregation through the practice 
of trip assignment linking geometric centers of traffic analysis zones 
(15). The pervasiveness of this geographic perturbation method 
has been attributed to the ease for the data custodian, who may be 
technically or practically limited to conduct this approach, but its 
application certainly limits the conceivable utility of household travel 
survey data (13).

A second set of geographic perturbation methods reflects affine 
point transformations in which household data points may be deter-
ministically repositioned to a new set of geographic locations (16). 
One specific affine point transformation technique, translation, later-
ally shifts household locations a specified distance and direction 
from their original location while preserving geographic scale (17). 
A second affine point transformation technique alters each household 
location by multiplying each geographic coordinate of the original 
household location by a scaling constant (10). This multiplying of a  
constant differentiates the scale change affine point transformation 
technique from the translation technique in which a constant is added 
to each geographic coordinate. Another affine point transformation 
technique rotates the location of all households in a data set by a 
fixed angle selected by the data custodian (9). Alternatively, the data 
custodian may choose to translate the original household location 
before the rotation has been applied so as to pivot the perturbed 
location from some arbitrary position. Correspondingly, an affine 
point transformation approach may be performed that uses any 
combination of the three techniques of translation, scaling change, 
or rotation to mask the original household location of the survey 
respondent.

Applying an affine point transformation provides a more dis
aggregate household representation, thus improving the utility of 
the data set to the user interested in activity-based travel demand 
models or nonmotorized transportation. Moreover, the use of an 
affine point transformation preserves household representation at a 

scale necessary to avoid any ecological fallacy when corresponding 
disaggregate built environment measures are used. Nevertheless, 
although affine point transformation may potentially increase the 
utility of travel survey data for the user, applying this method may 
also fail to mitigate the risk of disclosing the true location of the 
household to a data intruder. The reason for this increased risk is that 
all perturbed household locations are deterministically repositioned 
through the use of a constant specified by the data custodian, which 
if identified by a data intruder would allow the reverse geocoding of 
the perturbed location back to its original location.

This disclosure risk has been intuitively referred to as “identity 
disclosure” and refers to this ability of a data intruder to directly 
associate a household to a record in a publicly released data set. 
According to the hierarchical risk framework, the highest level 
of disclosure risk, called a first-tier risk, is the realization of this 
direct one-to-one correspondence between the perturbed and actual 
household location without the use of any supplemental external 
data source (18). Having established this link, and given the ease of 
access to readily available secondary data sources, a data intruder 
may then hypothetically associate the household’s identity to other 
characteristics unique to this household. This potential to release 
additional sensitive household data, recognized as attribute disclosure, 
is a second-tier risk (19).

To provide added protection against these forms of disclosure 
risk, the data custodian may opt to perform a geographic perturba-
tion method by randomly selecting the translation distance, scaling 
distortion, and rotation direction for each spatially relocated house-
hold (9). This perturbation approach, which has also been referred 
to as “jittering” (20), differs from the affine point transformation 
technique by imposing a heuristic that each household in the travel 
survey data set must be uniquely and randomly displaced from its 
original spatial position as opposed to each household being displaced 
identically and deterministically (10). Kwan et al. illustrated three 
random spatial perturbation techniques in which the perturbed 
household location has been randomly placed (a) within a polygon 
whose radius or perimeter has been defined relative to the original 
household location, (b) along a line feature such as the radius of a 
circle chosen by the data custodian with a center representative of the 
original location, or (c) within a circle where the original household 
location defined the circle’s center (17).

In addition, these random spatial perturbation techniques have 
accounted for the population density characterizing the household’s 
neighborhood to inform the random translation of the perturbed 
location (21). This added consideration displaces households resid-
ing in a neighborhood with a lower population density by greater 
distances than survey respondents who reside in neighborhoods 
characterized by a higher population density because the former 
household has a greater risk of first-tier disclosure (10). Therefore, 
a random geographic perturbation technique incorporating a level of 
displacement dependent on the residential density of the neighbor-
hood would appear to have a greater prospect for reducing disclosure 
risk than an affine point transformation. Analogous to an affine point 
transformation, a random geographic perturbation technique would 
also have an enriched potential for improving data utility over an 
aggregation method. Nonetheless, one shortcoming of this improved 
technique is the potential for a perturbed household location to be ran-
domly repositioned close to the original location, which compromises 
the intention to negate the likelihood of a one-to-one correspondence.

To reduce the potential for identity disclosure, an adaptive random 
geographic perturbation technique has recently been proposed in 
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which the relocated household must be displaced from the actual 
household location by a minimum distance assigned by the data 
custodian (22, 23). This random geographic perturbation technique 
generates a torus, or doughnut-shaped space, around the original 
household location that represents the potential area in which a 
household may be repositioned. This doughnut masking technique 
has shown initial promise toward improving the risk of disclosure 
with a negligible effect on the specificity and sensitivity of detect-
ing clustering patterns or trends associated with the utility of the 
data source (22). As with the aforementioned random geographic 
perturbation techniques, precaution must be practiced by the data 
custodian when defining the radii associated with the inner and outer 
rings of the doughnut because the greater the distance between the 
actual household location and the perturbed location, the greater the 
spatial arrangement attributed to the original data may deviate (17).

Methodological Approach

Hampton et al. described two strategies for applying a doughnut 
masking technique to a household data source that either (a) allows 
the geographically perturbed household to be relocated outside its  
original zonal boundary or (b) restricts the geographically per-
turbed household to remain within its original neighborhood (22). 
The former approach may be more suitable for use with the dis
aggregate data synonymous with activity-based travel demand models 
and their adherence to comparable geographic scales, whereas the 
latter seems more suitable for use in a four-step model reliant on 
aggregate data sources. As such, the selection and subsequent con-
struction of inner and outer rings of a doughnut masking technique 
appropriate for an analysis of disaggregate built environment measures 
will be discussed.

In this methodological approach, the outer ring of the doughnut 
represents the maximum distance a household may be displaced from 
its original geographic location and may be thought of as a strategy 
to limit spatial error introduced to the perturbed data set. By con-
straining the maximum distance a household may be repositioned, 
the data custodian has attempted to minimize any variation introduced 
to the true relationship of a built environment measure with the sur-
vey respondent’s actual household location when compared with the 
relationship of the same measure with the geographically perturbed 
household location At a disaggregate scale, the built environment 
influences household travel behavior, particularly the choice of non-
motorized modes. Thus, a reduction in the possible displacement dis-
tance of a household repositioned by the application of a geographic 
perturbation method must be sought by the data custodian.

The connection between the built environment and nonmotorized 
travel has commonly been measured through the use of straight line 
buffers extending from the household’s physical location (24) with 
½-mi and 1-mi buffers often applied (25, 26). In accordance, these 
two distances were explored as radii values for the doughnut’s outer 
ring (ror).

In complement to the outer ring and its relationship with the max-
imization of data utility, the intention of the inner ring of the dough-
nut masking technique is to minimize the disclosure risk associated  
with a data intruder properly identifying a household respondent from 
a perturbed data set. Although the objective of disclosing perturbed 
household-specific data is to ensure that the data are sufficiently 
anonymous, the decision concerning an acceptable level of anonymity 
is often left to the data custodian to make (27). The following adapta-
tion of a formula used by Allshouse et al. allows the data custodian 

to select a radius for the inner ring, rir, relative to the geographic area 
of the underlying neighborhood (e.g., census tract) that assumes a 
homogeneous residential density (23).

r k( )( )=
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In Equation 1, the inner ring radius for a household in a particular 
neighborhood is equal to the square root of the product of the quotient 
of the neighborhood’s area divided by π, which is multiplied by the 
number of occupied households in the neighborhood selected by  
the data custodian as providing a sufficient level of anonymity (k). 
In this study, two separate inner ring perimeters were selected, which 
reflect 0.5% and 1% of the total number of occupied households in 
the neighborhood, respectively. The combination of these two inner 
ring radii with the aforementioned outer ring radii defined the four 
doughnut size trials explored in this study.

After establishing the proper bounds, the data custodian then must  
randomly reposition the household into the doughnut circling the original  
location. Rushton et al. provide a methodological framework, adjusted 
for this random geographic perturbation process, which enables the 
data custodian to convert the displacement distance from customary 
units of feet and miles to latitudinal and longitudinal decimal degrees, 
DD, through the use of the following two equations (10):
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In Equation 2, the change in decimal degrees for the y-coordinate 
is represented as ΔDDy and the parameter va represents a random 
value between −ror and −rir or rir and ror, while the constant, 69.17, 
represents a scalar factor to compensate for the east–west narrowing 
of the distance between two meridians as they near either pole (10).  
Equation 3, which converts a customary unit distance into the 
decimal degrees required for altering the longitudinal measure, 
uses the same scalar factor as well as the parameter vb to represent 
a unique random value in the same range as va and the latitudinal 
coordinate associated with the actual household location, lat1, to 
calculate the change in decimal degrees of the x-coordinate, ΔDDx. 
The conditions of Formula 4 and Formula 5 must additionally be met 
for the data custodian to guarantee the perturbed location will be in 
the doughnut:

r v va b≤ + (4)ir
2 2 2

r v va b≥ + (5)or
2 2 2

Once the displacement distance has been calculated in decimal 
degrees, Equation 6 and Equation 7 are then calculated to define the 
new latitude and longitude coordinates of the household geographically 
perturbed by applying the doughnut masking technique.

y= + ∆lat lat DD (6)2 1

x= + ∆long long DD (7)2 1
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Empirical Application  
and Proof of Concept

To understand better the potential effect of applying a geographic 
perturbation method to travel survey data as it relates to preserving  
data utility and respondent confidentiality, this research tested the 
doughnut masking technique on 10 Portland area respondents of the 
2010 Oregon Household Activity Survey as a proof of concept. 
Each respondent belongs to a household in a unique neighborhood, 
defined here as a 2010 U.S. census tract, in the metropolitan region 
selected by the research team on the basis of its spatial location 
in the three-county study area and variation in population density 
(Figure 1). The built environment measures examined for each of the 
selected neighborhoods and the magnitude of these measures as they 
relate to the randomly selected household in each neighborhood are 
provided in Table 1.

These select households were then geographically perturbed 
through a simulation process performed for each of the four com
binations of doughnut sizes described in the methodological approach. 
The first trial randomly perturbed the original household location in 
each neighborhood 100 times within a doughnut-shaped area with an 

outer ring radius extending ½ mi from the original location and an 
inner ring with a radial distance associated with the masking of the 
household by 0.5% of all occupied households in the neighborhood. 
The second trial maintained the same outer ring radius, but extended 
the inner ring radius unique to each neighborhood from a distance 
relative to 0.5% of the occupied households in the neighborhood to 
a distance related to 1% of the occupied households. The third and 
fourth trials extended the outer ring to a distance of 1 mi with the 
third trial having an inner ring radius equivalent to the first trial and 
the fourth trial having an inner ring radius equivalent to the second 
trial. In total, each household location was geographically perturbed 
400 times during four trials in an effort to examine the effect applying 
a doughnut masking technique had on data utility and disclosure risk. 
Figure 2 illustrates this simulation process for one household being 
geographically perturbed in each of these four trials.

Analysis of Data Utility

After the doughnut masking technique was conducted on one household in  
each of the 10 distinct neighborhoods, the percent root mean square 

FIGURE 1    Population density of 10 neighborhoods in the Portland metropolitan region.



TABLE 1    Built Environment Measures for Selected Household from 10 Portland Neighborhoods

Built Environment Variable

Portland 
Neighborhood

Persons per Acre 
(½-mi buffer) 

Jobs per Acre  
(½-mi buffer) 

Jobs per Person 
(½-mi buffer) 

Intersections 
per Acre  
(½-mi buffer) 

Distance to 
Nearest Park 
(ft)

Distance 
to Nearest 
Grocery 
(ft) 

Distance 
to Nearest 
Rail Station 
(ft) 

Distance 
to Nearest 
Bus Stop 
(ft) 

Milwaukie 3.90 4.49 1.15 0.23 1,163 2,682 9,067 528
5.96 4.37 0.81 0.26 537 2,910 16,026 314

Clackamas Transit 9.69 10.88 1.12 0.30 822 1,366 11,106 622
  Center 10.68 6.65 0.64 0.23 935 1,843 2,577 303

Wilsonville 0.86 1.14 1.32 0.06 385 5,682 5,987 11,036
4.01 0.74 0.17 0.18 433 7,374 5,886 827

Kenilworth 17.80 3.39 0.19 0.64 875 1,312 14,127 538
14.84 4.65 0.34 0.50 938 709 10,650 219

East Overlook 11.81 1.36 0.11 0.71 372 2,152 3,366 669
10.86 2.87 0.27 0.54 491 1,762 1,796 339

Northwest 21st and 37.29 49.56 1.33 0.97 651 679 6,527 310
  23rd Avenue 26.81 25.61 0.96 0.79 476 455 1,167 141

Portland State 11.66 50.16 4.30 0.87 629 2,712 12,839 258
  University 14.35 69.22 4.97 0.71 200 3,477 586 112

North Beaverton 5.73 5.49 0.96 0.22 527 2,909 4,911 566
5.93 3.99 0.81 0.22 341 3,479 3,825 404

Raleigh West 11.25 3.27 0.29 0.45 450 2,575 9,564 424
11.54 5.20 0.55 0.39 435 1,501 3,947 235

Sherwood 0.40 0.05 0.14 0.02 421 12,642 3,968 12,148
2.37 0.22 0.42 0.07 2,646 6,191 31,516 10,671

Note: Data in rows for each Portland neighborhood represent unit of analysis: Row 1 = U.S. census tract; Row 2 = OHAS household.

FIGURE 2    Four simulation trials of the doughnut-masking technique for one selected household: (a) Trial 1: 
0.5% inner ring, ½-mi outer ring; (b) Trial 2: 1% inner ring, ½-mi outer ring; (c) Trial 3: 0.5% inner ring,  
1-mi outer ring; and (d) Trial 4: 1% inner ring, 1-mi outer ring.

(a) (b)

(c) (d)
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error (RMSE) was calculated for each built environment measure 
as a representation of the variation introduced by geographically 
perturbing the original household location. An evaluation of the 
RMSE in the four trials informs the effect of geographically per-
turbing a household with the doughnut masking technique in relation 
to preserving the utility of the original data set. Although there is 
a conceptual understanding among travel demand modelers that a 
geographically perturbed data set reduces the danger of a first-tier 
disclosure risk, there has been little objective research to define an 
acceptable tolerance for introduced spatial error. By geographically 
perturbing a household location in this empirical application, spatial 
error has been added to the resulting data set. This proof of concept  
analyzes the extent of this spatial error, or variation, in eight built 
environment measures introduced by applying the doughnut masking  
technique. The level of introduced spatial error ultimately informs 
the ability of the data custodian intent on improving the understanding 
of nonmotorized travel to disseminate disaggregate household data to 
a wider audience.

Table 2 denotes the percent RMSE results for the two trials, with a 
½-mi outer ring to examine the variation in built environment mea-
sures introduced by geographically perturbing the original household. 
Likewise, Table 3 compares the variation of these built environment 
measures on the perturbed household locations repositioned within 
a 1-mi outer ring from the actual association of these measures on 
the household, but with an enlarged inner ring radius that potentially 
relocates the household a greater distance from its true location.

In general, a cross-table examination found that the RMSE values 
linked to the built environment measures for the two trials with a 
½-mi outer ring were lower than the RMSE values for built envi
ronment measures for the two trials with a 1-mi outer ring radius. 
Intuitively, one may have hypothesized that an increase in the maxi-
mum allowable displacement distance, as in Trials 3 and 4, would 
increase the level of spatial error introduced to the data set. An 
examination into this expected trend revealed that the households 
in the most densely populated neighborhoods in Multnomah and 
Washington Counties, Northwest 21st and 23rd Avenue and Raleigh 
West, had a greater RMSE value for all built environment measures  
in the trials with a greater outer ring radius. Comparatively, the house-
holds of Wilsonville and Sherwood showed an increase in spatial error 
to be consistent with an increase in the tolerable displacement dis-
tance. These two neighborhoods are most reflective of a traditional 
suburban setting with lower residential and employment densities 
and greater distances to transit. However, instances of inconsistency 
in the hypothesized trend were found in the variation for specific built 
environment measures in the remaining six neighborhoods.

The percentage of introduced spatial error for built environment 
measures varied across urban and suburban contexts on the basis 
of the classification of the measure. Examining the percent RMSE 
for the two census tracts farthest from Portland’s central business 
district, the two built environment measures related to employment 
and the distance to nearest park measure exhibited a high percentage 
of spatial error during the four trials. As for the two households clos-
est to Portland’s city center, the built environment measures with a 
consistently high percent RMSE included distance to nearest bus stop 
and nearest park. Overall, with the exception of the nearest-to-park 
built environment measure, those measures related to destination 
accessibility and distance to transit exhibited lower spatial variation  
in the more suburban contexts with lower residential densities, 
whereas the employment density and jobs–housing balance diversity 
measures exhibited the most variation in these suburban contexts.  
For the households in the six neighborhoods with the highest resi-

dential density, the four distance-related measures generally had 
the highest percent spatial error introduced by geographically perturb-
ing the household location. This trend held true, especially for those 
four households located in higher density neighborhoods outside 
the Portland city center in which the only measure with a percent 
RMSE greater than 100 was the jobs–housing balance measure for 
the fourth trial.

Comparing the third with the first trial, in which the outer ring 
radius was extended while maintaining the smaller inner ring radius, 
the analysis of spatial error revealed three built environment measures 
that consistently increased in variation across all neighborhoods. One 
of the four density-related measures of the built environment, intersec-
tions per acre, was found to have a percent RMSE value consistently 
lower for the smaller doughnut size; whereas two distance-related built 
environment measures, feet to nearest grocery store and rail station, 
had lower RMSE values associated with the first trial characterized by 
the shortest inner ring and outer ring radius combination. This behav-
ioral stability in the spatial error of these built environment measures 
as well as the performance of the residential density measure noted in 
Table 4 make these suitable candidates for future applications of the 
doughnut masking technique seeking to link the outer ring radius to 
variation in a specific built environment measure.

Analysis of Disclosure Risk

As a supplement to the examination above into data utility preserva-
tion, a comparison of the disclosure risk associated with each of 
the four trials was conducted. Whereas the size of the doughnut’s 
outer ring was fluctuated to examine built environment variation 
in the context of conserving data utility, the size of the doughnut’s 
inner ring may be increased or decreased depending on the anonym-
ity level deemed necessary by the data custodian. Similar to the dis-
cussion about consensus on a geographic perturbation method most 
appropriate for application to the data set, there have also been a 
variety of statistical approaches tested to quantify the risk of disclo-
sure attributed to a geographically perturbed household (8). Sweeney 
proposed one such measurement for determining a one-to-one cor-
respondence between the geographically perturbed and original 
household location referred to as the k anonymity requirement (27). 
When disclosure risk is examined, the concept of k anonymity may 
be understood in regard to k representing the number of households 
from which the original household cannot be reversely identified 
(21). An estimation of this k anonymity statistic may be calculated 
by using Equation 8 (23):

( )= π × ×ˆ
area

(8)2k d
N

The estimated k anonymity statistic in Equation 8 is equal to the 
product of π and the squared distance between the original household 
location and the geographically perturbed location multiplied by the 
number of occupied households in the household’s neighborhood 
(N) divided by the land area of the neighborhood encompassing 
the household. Akin to the previous analysis of built environment 
variation attributed to a resizing of the outer ring of the doughnut, 
the estimated k anonymity statistic was calculated for the selected 
households in each of the 10 neighborhoods during the four trials. 
Table 4 reports the median estimated k anonymity statistic as well as 
the minimum and maximum estimated k anonymity statistics found 
in each neighborhood in the 100-simulation sample for each trial.



TABLE 2    Percent Root Mean Square Error of Built Environment Measures for Trials with 0.5% Inner Ring Radius

Portland  
Neighborhood

Trial: Outer Ring 
Radius (mi)

Persons per Acre 
(½-mi buffer) 
(%)

Jobs per Acre  
(½-mi buffer) 
(%)

Jobs per Person 
(½-mi buffer) 
(%)

Intersections 
per Acre (½-mi 
buffer) (%)

Distance to 
Nearest Park 
(ft) (%)

Distance 
to Nearest 
Grocery  
(ft) (%)

Distance 
to Nearest 
Rail Station 
(ft) (%)

Distance 
to Nearest 
Bus Stop 
(ft) (%)

Milwaukie Trial 1: 0.5 59 68 113 49 154 49 10 48
Trial 3: 1.0 64 56 86 51 418 77 20 49

Clackamas Transit Trial 1: 0.5 33 29 37 18 189 32 59 94
  Center Trial 3: 1.0 25 73 73 26 183 42 95 154

Wilsonville Trial 1: 0.5 57 185 313 44 1,196 18 21 12
Trial 3: 1.0 76 559 16,148 61 1,635 34 39 22

Kenilworth Trial 1: 0.5 26 34 73 10 74 144 15 118
Trial 3: 1.0 26 46 70 23 62 177 29 114

East Overlook Trial 1: 0.5 9 27 24 12 54 61 77 60
Trial 3: 1.0 20 41 82 20 53 104 149 57

Northwest 21st and Trial 1: 0.5 20 50 49 20 1,682 170 56 437
  23rd Avenue Trial 3: 1.0 56 104 260 31 2,421 333 94 685

Portland State Trial 1: 0.5 75 79 90 25 282 30 249 128
  University Trial 3: 1.0 87 101 90 38 328 49 476 116

North Beaverton Trial 1: 0.5 23 714 1,255 12 57 31 41 58
Trial 3: 1.0 29 637 1,153 19 87 50 74 73

Raleigh West Trial 1: 0.5 46 33 46 17 61 73 52 181
Trial 3: 1.0 70 46 61 36 91 80 91 236

Sherwood Trial 1: 0.5 96 365 373 97 99 25 6 29
Trial 3: 1.0 136 2,552 993 125 149 45 11 51

Note: Boldface = instances of greater percent RMSE for respective built environment measure in trial with 1-mi outer ring radius when compared with trial in ½-mi outer ring radius.



TABLE 3    Percent Root Mean Square Error of Built Environment Measures for Trials with 1% Inner Ring Radius

Portland  
Neighborhood

Trial: Outer Ring 
Radius (mi)

Persons per Acre 
(½-mi buffer) 
(%)

Jobs per Acre  
(½-mi buffer) 
(%)

Jobs per Person 
(½-mi buffer) 
(%)

Intersections 
per Acre (½-mi 
buffer) (%)

Distance to 
Nearest Park 
(ft) (%)

Distance 
to Nearest 
Grocery  
(ft) (%)

Distance 
to Nearest 
Rail Station 
(ft) (%)

Distance 
to Nearest 
Bus Stop 
(ft) (%)

Milwaukie Trial 2: 0.5 58 67 110 48 161 44 9 46
Trial 4: 1.0 60 60 112 51 350 68 17 49

Clackamas Transit Trial 2: 0.5 33 32 40 18 170 37 59 106
  Center Trial 4: 1.0 60 60 112 51 350 68 17 49

Wilsonville Trial 2: 0.5 52 217 374 42 1,104 17 21 13
Trial 4: 1.0 82 493 2,045 66 1,801 36 41 22

Kenilworth Trial 2: 0.5 26 37 65 12 71 162 15 125
Trial 4: 1.0 30 43 75 25 63 198 28 115

East Overlook Trial 2: 0.5 8 29 26 12 48 67 65 49
Trial 4: 1.0 20 48 111 22 53 107 130 58

Northwest 21st and Trial 2: 0.5 24 43 42 20 1,703 177 61 427
  23rd Avenue Trial 4: 1.0 58 105 208 32 1,939 336 90 538

Portland State Trial 2: 0.5 71 101 86 21 228 29 262 134
  University Trial 4: 1.0 101 88 101 42 361 54 461 116

North Beaverton Trial 2: 0.5 25 791 1,435 14 60 35 39 57
Trial 4: 1.0 28 704 1,286 21 84 39 68 58

Raleigh West Trial 2: 0.5 59 38 52 13 58 72 61 149
Trial 4: 1.0 73 51 71 41 88 97 101 340

Sherwood Trial 2: 0.5 98 345 470 101 108 26 6 31
Trial 4: 1.0 127 2,032 782 113 163 44 10 51

Note: Boldface = instances of greater percent RMSE for respective built environment measure in trial with 1-mi outer ring radius when compared with trial in ½-mi outer ring radius.
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Results of this analysis pointed to an overall trend in which the 
minimum estimated k anonymity increased for a majority of house-
holds when the inner ring radius was extended while preserving an 
identical outer ring radius. This finding supported the hypothesis 
that a larger inner ring radius would decrease the potential for a first-
tiered identity disclosure. Yet, there were five instances in which the 
increase in the inner ring radius from a distance reflective of 0.5% 
of occupied households in the neighborhood to a distance with an 
estimated k anonymity of 1% of occupied households resulted in a 
lower minimum estimated k anonymity statistic. The minimum  
estimated that k anonymity statistic for the Milwaukie household 
was greater in the first trial defined by the shorter inner ring, as was 
the case for the household in the North Beaverton neighborhood where 
the minimum estimated k anonymity statistic was 69 for the 0.5% 
inner ring and 41 for the 1% inner ring tested in the second trial. The 
reporting of a minimum estimated k anonymity statistic highlights 
the debate concerning the decision of an acceptable level of disclosure 
risk. For example, the minimum estimated k anonymity statistic of the 
100 simulations related to the first trial for the East Overlook house-
hold indicated that there were only 10 households a data intruder must 
choose between to make a one-to-one correspondence between the 
original and geographically perturbed household.

A comparison of the minimum estimated k anonymity statistic 
for the first pair of trials with the second pair of trials shows that an 

increase in the outer ring radius led to an increase in the minimum 
estimated disclosure risk. Intuitively, one may hypothesize that an 
increase in the outer ring radius when the inner ring radius is pre-
served would increase the median estimated k anonymity statistic 
calculated for each household during 100 simulations. This finding 
is attributable to the indirect association between the chosen inner 
ring radii and selected outer ring radii in this four-trial proof of 
concept.

Discussion of Results

Central to this empirical application has been the exploration of an 
appropriate balance concerning a minimization of disclosure risk, 
estimated by k anonymity, and maximization of data utility, measured 
by variation in the built environment introduced by geographically 
perturbing a household location. Application of the doughnut mask-
ing technique has shown promise as an approach in negotiating this 
balance, which has been largely overlooked by the travel survey 
community. However, as is often the case in proof of concept con-
tributions, this study has also raised questions to be addressed by 
future applications.

In relation to the minimization of disclosure risk, the concept of 
k anonymity has gained traction in public health research although 

TABLE 4    K Anonymity Statistics for Four Simulation Trials

Trial Number and Description

Portland 
Neighborhood

K Anonymity 
Statistic 
Measure

Trial 1: ½% 
Inner Ring, ½-mi 
Outer Ring

Trial 2: 1% 
Inner Ring, ½-mi 
Outer Ring

Trial 3: ½% 
Inner Ring, 1-mi 
Outer Ring

Trial 4: 1% 
Inner Ring, 1-mi 
Outer Ring

Milwaukie Minimum 33 29 15 38
Median 592 496 2,435 2,035
Maximum 986 960 3,932 3,941

Clackamas Transit Minimum 19 37 86 158
  Center Median 1,065 1,070 4,339 4,466

Maximum 2,221 2,199 8,916 8,892

Wilsonville Minimum 14 16 20 18
Median 92 104 365 359
Maximum 185 187 742 733

Kenilworth Minimum 15 48 41 25
Median 1,980 1,954 6,783 8,434
Maximum 4,067 4,018 16,280 16,073

East Overlook Minimum 10 23 31 107
Median 1,460 1,637 5,160 5,081
Maximum 2,745 2,699 10,488 10,986

Northwest 21st and Minimum 41 143 415 1,191
  23rd Avenue Median 7,307 7,750 27,375 28,698

Maximum 13,477 13,176 53,499 54,010

Portland State Minimum 74 90 84 145
  University Median 1,725 1,739 7,365 6,984

Maximum 3,710 3,691 14,573 14,764

North Beaverton Minimum 69 41 88 47
Median 726 818 2,671 2,736
Maximum 1,375 1,384 5,447 5,420

Raleigh West Minimum 13 39 256 275
Median 1,293 1,126 5,173 5,725
Maximum 2,454 2,442 9,793 9,799

Sherwood Minimum 13 27 18 33
Median 37 45 148 127
Maximum 62 62 251 250
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its operationalization has been diverse. The estimated k anonymity 
statistic provides the data custodian with an initial idea of the 
confidentiality provided by the chosen inner ring radius, yet there 
is importance in realizing that this statistic will most likely vary 
from household to household in the perturbed data set (21). Also, 
k anonymity, in this application, represents an estimate rather than 
actual count of households that protect a respondent from a first-tier 
identity disclosure. Moreover, estimated k anonymity is a density-
based measure, which emphasizes the differences inherent in pre-
venting a first-tiered disclosure breach in an urban context versus 
a setting marked by a lower residential density. To illustrate this 
point, a student household in the urban neighborhood of Portland 
State University (PSU) may not need to be relocated as much as a 
household in a suburban context would need to be relocated because 
there may be plenty of households with similar attributes located 
near their multilevel dormitory unit to mask the household’s unique 
characteristics.

Also, trial selection in this application was performed with the 
knowledge that the inner ring linked to reducing disclosure risk would 
completely reside in the data utility–specific outer ring. As such, 
attention must be given to a scenario in which a household in a low-
density residential neighborhood requires a threshold of anonymity 
that extends the disclosure risk-specific inner ring radius beyond the 
1-mi radius related to a common walk trip distance that was selected 
to limit built environment variation. This scenario underscores a 
discussion on the selection of an appropriate outer ring radius for a 
neighborhood with a lower residential density. Because households 
in more suburban neighborhoods must be repositioned a greater 
minimum distance than their urban counterparts to preserve survey 
participant anonymity, consideration should be given to the possi-
bility of relating the doughnut’s outer ring radius to a specific built  
environment measure. For instance, a household in the more sub
urban context such as Sherwood may have its outer ring radius 
linked to employment density because this measure exhibited the 
greatest variability for this household in the third trial. Meanwhile, 
the household in the PSU neighborhood may have its outer ring radius 
linked to the rail distance measure because the spatial error related 
to this transit accessibility variable is greater than other measures 
in this third trial.

Also, although the built environment measures used in this research 
spanned the 5D classification scheme, there are countless measures 
to explore in future applications of the doughnut masking technique 
such as additional measures of land use mix or distance to transit 
(28). The variables specific to this study highlight the importance of 
disaggregate measures to an improved understanding of nonmotor-
ized travel. Accordingly, disaggregate measures should be used exclu-
sively in any future application of the doughnut masking technique. 
The use of these measures will address ecological fallacy concerns 
that have clouded past zonal-based travel demand models.

Moreover, the application of the doughnut masking technique in 
this study has been based solely on the reduction of first-tier disclo-
sure risk. Although the importance of lessening the potential for this 
highest breach in respondent confidentiality is well understood, steps 
must also be taken to reduce the likelihood of a second- or third-
tier disclosure (19). One additional step to decrease the possibility 
of a lower-tiered disclosure breach for a travel survey respondent 
may be to geographically perturb the activity locations of household 
members (e.g., workplace). Information on a household member’s 
workplace may be the additional piece of knowledge a data intruder 
needs to properly identify a household location. For instance, a 
household member may have an occupation supported only by one 

regional employer (e.g., university professor). Similarly, a household 
member may shop at a grocery store that is atypical from the shop-
ping destination of other households in the neighborhood. In such 
circumstances, a data custodian may perturb the activity locations of 
the household member in addition to the residence. Furthermore, the 
data custodian may give consideration to the geographic offsetting 
of travel routes, which may necessitate other perturbation methods or 
spatial analyses aside from measuring built environment variation 
to calculate appropriate displacement bounds.

These illustrations reflect challenges in using the doughnut mask-
ing technique as a postprocessing strategy. As the manner in which 
researchers balance disclosure risk and data utility evolves, atten-
tion should be given to the possibility of integrating the doughnut 
masking technique during survey design. Specifically, by establish-
ing algorithms for geographically perturbing household locations 
within the framework of an automated process, the doughnut mask-
ing of a survey respondent may be accomplished during the data 
collection process. In this survey design, a household susceptible to 
a first-tier risk may be immediately detected by the algorithm in the 
automated process as a candidate for geographic perturbation when 
recorded by the survey administrator and, subsequently, its location 
may be instantaneously perturbed. Thus, future thought should be 
given to the necessity of geographically perturbing disaggregate 
household data when the sample design for a travel survey is devised, 
because doing so would most likely quicken the ability of agencies to 
release these valuable data to the public by reducing postprocessing 
time while upholding the agreed confidentiality pledge.

Ultimately, an improved understanding of the spatial error and 
respondent anonymity trade-off will better inform the selection of 
an appropriate survey design when household travel survey data are 
collected for a wider dissemination. This proof of concept examining 
the application of the doughnut masking technique to household 
travel survey data has highlighted one promising approach for travel 
demand researchers to consider and tabled a greater discussion 
concerning the proper balance between survey data utility and 
respondent confidentiality faced by a data hungry profession.
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