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Direct demand modelling approach to forecast cycling
activity for a proposed bike facility
Steven R. Gehrkea and Timothy G. Reardonb

aDepartment of Geography, Planning, and Recreation, Northern Arizona University, Flagstaff, AZ, USA;
bMetropolitan Area Planning Council, Boston, MA, USA

ABSTRACT
In the United States, planning and design efforts to generate bike-
friendly environments through the greater provision of safe, low-
stress bike infrastructure in our cities continue to advance. In
Cambridge, Massachusetts, construction of the Grand Junction
Pathway – an envisioned shared-use pathway – is at the heart of
a citywide effort to enhance its active transportation system.
However, a challenge – shared by many public agencies given
that data on cycling activity are rarely frequently systematically
gathered – is the creation of a baseline estimate of cycling
demand for this planned network link. Using short-duration
manual data supplemented with long-duration count data, this
study employs a state-of-the-practice method for generating
annual average daily bicycle trips for current bike network
facilities. A statistical modelling strategy is then undertaken to
forecast the volume of daily cyclists that the proposed off-street,
shared-use path could expect to attract given its physical context
and the socioeconomic attributes of nearby residents.
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1. Introduction

Meeting the challenge to plan and design cycling-friendly cities is essential to reducing
inequities, improving traffic management, and producing co-benefits related to the
economy, environment, and public health of a city’s population (Giles-Corti et al.
2016). Urban planning and design efforts to generate bike-friendly environments charac-
terized by a greater provision of bike infrastructure have been widely associated with
increased rates of cycling activity (Pucher et al. 2011). However, while municipal govern-
ments in the United States have traditionally collected data on motorized traffic demand
and roadway supply, public agencies have rarely systematically gathered data about
cycling activity and the bike network (Buehler and Dill 2016). Standardization of this
information is needed not only to improve measurement of cycling demand, but also
to support a provision of the future bike infrastructure required to enhance both the sus-
tainability and resiliency of an urban transportation system (Pucher and Buehler 2012).

In Cambridge, Massachusetts, construction of the Grand Junction Pathway (GJP) – an
envisioned shared-use pathway for cyclists and pedestrians – is anticipated to produce
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direct economic, environmental, and health-related benefits to the residents, workers,
and visitors of the Kendall Square neighbourhood. A requisite first step to determining
the extent of the many intended non-transportation benefits, however, is an empirically
driven estimation of the demand in cyclists the construction of this planned link in the
regional bike network would attract. To date, active transportation planners, who often
rely on the results from limited manual count programmes or regional travel demand
models that are unresponsive to active travel modes, have not had access to directed plan-
ning tools that enable them to make informed decisions about the future demand associ-
ated with new bike infrastructure such as the GJP.

This study seeks to address this need in active transportation study to create or repli-
cate direct demand models estimating local and regional demand for cycling associated
with the introduction of a high-quality bike facility. To accomplish this stated objective,
first, a state-of-the-practice method to translate short-duration manual bike counts to
average daily cycling activity is introduced. Second, statistical modelling strategies are
developed to define the neighbourhood-level determinants of the adjusted cycling
demand metric for observed count sites. Informed by the model estimation results, a
segment-level forecast of cycling demand is produced for the current and envisioned
Cambridge bike network, including the proposed GJP. An implementation of this ana-
lytic approach is intended to offer a data-driven, decision-support tool for urban plan-
ners in jurisdictions with bike count programmes to develop context-specific direct
demand models for cycling activity, with model findings then used to help evaluate
the performance of a current bike network, support the creation of future bike infrastruc-
ture, and assess the expected non-transportation benefits associated with an expansion of
the bike network.

2. Literature review

Cycling activity can be measured in a variety of ways, resulting in a range of determinants
of its modelled demand (Chen, Zhou, and Sun 2017). Many methods for expressing
cycling activity (e.g. mode share, trip frequency, trip duration, trip distance) traditionally
rely on individual-level responses collected from household travel or intercept surveys,
which are either resource intensive or produce statistically unrepresentative samples
that distort quantitative analysis findings (Buehler and Dill 2016). In turn, the collection
of traffic monitoring data on cycling activity, which is presently not collected by most
urban municipalities (Chen, Zhou, and Sun 2017), is a data collection strategy that
allows planners to develop and track performance metrics when making evidence-
based decisions on future bike infrastructure investments (Hankey et al. 2017). The fol-
lowing paragraphs describe advancements in using data from local bike count pro-
grammes to produce measures of cycling activity and review recent studies examining
the determinants of predicted cycling activity.

2.1. Measurement of cycling activity

In the past decade, efforts to collect cycling activity from manual traffic count pro-
grammes akin to traditional methods in motor vehicle traffic monitoring have
emerged to assist planners with developing comparable performance metrics and
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modelling techniques to better understand cycling travel patterns (Hankey et al. 2017). In
general, these methods seek to extend the utility of short-duration bike counts, which are
rarely representative of the cycling activity associated with a particular facility, by
incorporating continuous long-duration bike counting technology to produce an esti-
mate more reflective of the average daily activity on a bike facility (Nordback et al.
2013). Notable advancements in this adaptation of traditional motor vehicle traffic moni-
toring strategies to model infrastructure-specific and system-wide cycling activity include
the introduction of scaling factors and factor groups to estimate typical bike traffic
patterns.

In practice, scaling factors are computed to account for temporal variations in cycling
activity associated with the time of day, day of week, and month of year that a short-dur-
ation count was observed (Miranda-Moreno et al. 2013; Nordback et al. 2013). The need
for scaling factors stems from an intentional selection of manual count locations by plan-
ners at sites where infrastructure improvements or high levels of cycling activity are
anticipated (Hankey et al. 2012); not necessarily the randomized selection of count
locations required to understand system-wide variations in cycling activity. Following
National Bicycle and Pedestrian Documentation Project protocol, these scaling factors
– derived from continuous automated counters – tend to be applied to mid-
week counts collected in the evening peak travel period (Nordback et al. 2013) in
order to convert short-duration manual bike counts into an annualized average of
daily cyclist activity accounting for temporal and seasonal variation (Miranda-Moreno
et al. 2013).

Factor groups, which classify continuous count locations with similar traffic patterns,
have been created to further account for temporal variation found across manual count
locations and improve accuracy in modelling cycling activity. In a study by El Esawey
et al. (2013), factor groups were developed for different functional road classes;
however, the authors found this distinction did not significantly improve cycling activity
estimates. Examining variation in traffic patterns specific to bike facilities, Miranda-
Moreno et al. (2013) demonstrated differences in the hourly and daily patterns for facili-
ties that attract utilitarian versus recreational cyclists. More recent studies have suggested
the incorporation of spatial variables to create facility groups to compare and contrast
traffic patterns at count locations in areas with different land use and demographic
characteristics (Lu et al. 2017).

Additional efforts to refine the measurement of cycling activity expressed as traffic
volume have examined the incorporation of variables to account for anomalies attributed
to atypical events of heavy precipitation or inclement weather (Nosal, Miranda-Moreno,
and Krstulic 2014), strong seasonal patterns (Fournier, Christofa, and Knodler 2017), or
occlusion that occurs when multiple pedestrians or cyclists pass a detection zone of an
automated counter at the same time (Lu et al. 2017). Other technology-related adjust-
ments to cycling activity estimates include correction factors pertaining to the impact
of light, rain, and temperature on the precision and accuracy of certain automated
devices (Proulx, Schneider, and Miranda-Moreno 2016) and the ability to compensate
for periodic malfunctions that lead to sporadic data collection gaps (El Esawey,
Ibrahim Mosa, and Nasr 2015). Taken together, these and other studies have helped
establish a state-of-the-practice approach to model cycling activity from data collected
by local traffic monitoring programmes (FHWA 2016).
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2.2. Determinants of cycling activity

Strategies for monitoring bike traffic are largely the result of increased pressure on gov-
ernment officials to document the demand and benefits of future investments in bike
infrastructure (Lindsey, Nordback, and Figliozzi 2014). To estimate these outcomes,
researchers have increasingly sought to use traffic monitoring count data to develop
new methods to model cyclist activity as a function of various determinants (Hankey
et al. 2017; Sanders et al. 2017). Kuzmyak et al. (2014) identified five types of cycling
activity determinants: facilities, land use and the built environment, demographics,
natural environment, and attitudes and perceptions. However, certain measurement cat-
egories are more applicable to analyses of traffic volumes, which rely more on aspects of
the transportation network and other spatial features describing the environment and
demographic context surrounding count locations (Wang et al. 2016).

In a review of studies investigating the effects of bike networks on cycling activity,
Buehler and Dill (2016) noted a positive relationship between cycling activity and net-
works of bike-friendly facilities including bike lanes, bike paths, and cycle tracks.
Using passively collected behavioural data, Dill (2009) found that cyclists preferred to
ride on bike facilities rather than in mixed traffic without a dedicated bike facility. Exam-
ining observed count data, Hankey et al. (2012) reported cyclist activity was significantly
higher on streets with bike facilities, including those with higher motor vehicle volumes
but a dedicated bike lane. Estimating a direct demand model, Fagnant and Kockelman
(2016) found an increase in the width of bike lanes and the provision of a separated
shared-use path to significantly increase cyclist activity. In general, direct demand
models have echoed other study designs revealing a beneficial nature of bike infrastruc-
ture provision to increasing cyclist traffic volumes (Wang et al. 2016); however, studies
designed to measure the differential impact of bike lanes and paths have been less con-
clusive (Buehler and Dill 2016).

While a positive connection between bike facilities and cycling activity is apparent,
detailed metrics of the built environment and demographic composition near count
locations is needed (Miranda-Moreno et al. 2013). To date, an assorted set of neighbour-
hood-level built environment and demographic determinants have been studied to
model variations in bike volume (Chen, Zhou, and Sun 2017; Sanders et al. 2017). In
terms of land development patterns, count locations in the vicinity of a greater diversity
in land use types (Strauss and Miranda-Moreno 2013; Chen, Zhou, and Sun 2017;
Hankey et al. 2017), intensity in commercial space (Griswold, Medury, and Schnieder
2011; Tabeshian and Kattan 2014), and population (Wang et al. 2014; Hankey and
Lindsey 2016) or employment (Fagnant and Kockelman 2016) density have displayed
higher levels of cycling activity. Less evidence exists modelling the neighbourhood
effect of network connectivity on cycling activity (Schoner and Levinson 2014). Strauss
and Miranda-Moreno (2013) discovered an increase in average street length was nega-
tively associated with cycling activity, while Griswold, Medury, and Schnieder (2011)
found connected node ratio to have a positive impact on cycling activity on weekdays.
Regarding neighbourhood-level sociodemographic and economic determinants, a
handful of studies (Strauss and Miranda-Moreno 2013; Wang et al. 2014) found
average household income was positively related to cycling activity; a finding contra-
dicted by other studies (Hankey et al. 2012; Hankey et al. 2017). More consistently,
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cycling activity has been positively associated with neighbourhoods composed of a higher
percentage of residents with a college education (Hankey et al. 2012; Wang et al. 2014),
which parallels individual-specific trends of cycling in the United States (Pucher et al.
2011). Likewise, count locations within neighbourhoods with a higher percentage of resi-
dents younger than six or older than 64 have been found to have lower levels of cycling
activity (Wang et al. 2014). In all, while studies providing direct demand models of cyclist
activity are emerging, research gaps still exist in the examination of how the built
environment – chiefly, network connectivity metrics incorporating links and nodes –
moderates the effect of bike-friendly facilities on increasing cycling activity.

3. Methods

3.1. Data

Count data used in the estimation of cycling demand associated with a proposed GJP
were gathered from two sources. Visualized in Figure 1, short-duration manual counts
were performed at 91 approaches across 19 intersections for one-hour peak period
travel periods in September 2016 as part of the City of Cambridge’s biannual bike
count programme. These observed counts of cyclists using various facilities at a given
time and location were complemented with long-duration automated counts collected
for the 2016 calendar year by the Eco-Totem counter at Broadway near Kendall
Square. In-ground loop detectors embedded under the pavement at this location
permit the continuous tracking of the number of bikes passing by this automated
counter, with these data being publicly shared in 15-minute time increments.

The 91 manual count locations were geocoded to the City’s street network, which
included corridor-level information (e.g. cycling facility type) related to the intersection
approach as well as all street segments in the citywide study area. To measure the

Figure 1. Manual and automated count locations in Cambridge, Massachusetts.
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neighbourhood-level context surrounding the count locations and other street segments,
the geographic midpoint of each transportation network link was determined and
spatially associated with two zone-based systems. First, the study area was delineated
into 344 250-meter grid cells, with a set of built environment measures (Gehrke and
Welch 2017) describing the land development pattern and network connectivity calcu-
lated for each subunit that was then assigned to the relevant street segment. Second,
the link-level midpoints were then spatially related to its surrounding United States
Census block group; for which various neighbourhood-level socioeconomic features
were calculated using 2012–16 American Community Survey’s Five-year Estimates data.

3.2. Analytic design

In combination, the two observed bike count data sources and neighbourhood-level
measurement of the physical and social context surrounding the City’s street network
were used to estimate the determinants of cycling demand and forecast cycling activity
at unobserved locations, including the GJP. The first step in this methodologic approach
was to develop a metric of cycling activity that more aptly reflected the demand at manual
count locations and was less biased by the time of day or season in which the 91 one-hour
snapshots of site-level cycling activity were collected. In subsequent steps, these activity
estimates were then used to summarize the number of annual average daily bicycle trips
(AADBT) for different bike facilities in the study area, model AADBT at manual count
locations based on neighbourhood-level physical and demographic characteristics of the
street segment’s surrounding context, and then forecast AADBT for all street segments in
Cambridge based on either facility type or a set of significant model parameters.

3.2.1. Measuring cycling activity at observed count locations
A central motivation of many manual bike traffic monitoring programmes, which are
time and resource intensive, is to provide active transportation data to planning pro-
fessionals seeking to best inform investments in new bike infrastructure, demonstrate
the utility of past investments, and ultimately quantify cycling benefits that make
active transportation projects more competitive in funding decisions (Alta Planning
+Design 2016). Therefore, the decision of where to conduct manual counts tends to be
deliberate with an aim to highlight a community’s infrastructure-related successes and
opportunities, which often leads to targeted counts during weekday peak travel
periods in warmer months. Given the spatiotemporal biases inherent to these subjective
decisions, researchers should seek to create a cycling activity metric reflecting average
travel conditions.

The estimation of AADBT at manual count locations in this study was performed
using methods similar to those defined for non-motorized travel modes in the Traffic
Monitoring Guide (FHWA 2016). The formula-based method adjusts the short-duration
bike counts with time-of-day, day-of-week, and month-of-year factors derived from the
long-duration counts collected by the Broadway Eco-Totem.

̂AADBT = citdm × 1
T
× 1

D
× 1

M
× L

[ ]
(1)
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where citdm is the observed count of bikes observed at site i at 15-minute interval (time-
of-day) t on day-of-week d in month-of-year m. T is the time-of-day factor (percent of
the annual count of cyclists at the Broadway Eco-Totem for equivalent 15-minute inter-
val), D is the daily factor (percent of the annual count of cyclists at the Broadway Eco-
Totem for equivalent day-of-the-week), and M is the month factor (percent of the
annual count of cyclists at the Broadway Eco-Totem for equivalent month-of-the-
year). An additional local factor (L) is then applied to correct for discrepancies with
the automated counter technology related to cyclists occasionally passing the Broadway
Eco-Totem outside the bike lane where detection is recorded. This study adopts a local
correction factor of 1.167 based on ground-truthing manual counts at the same location
(Toole Design Group 2018).

3.2.2. Forecasting cycling demand at unobserved locations
After expanding the short-duration counts into AADBT calculations for the observed
locations in the study sample, two strategies were employed to estimate cycling
demand. In the first strategy, the 91 locations were assigned to the nearest corresponding
segment in the street network, which was classified into five bike infrastructure-related
categories: on-street, local; on-street, arterial; on-street bike lane; off-street shared-use;
and off-street, cycle track. A mean AADBT for each facility type in the study sample
was next determined, with the facility-specific value and its standard deviation then
assigned to similarly classified streets in the study area to provide a confidence interval
estimate of forecast segment-level demand.

A second strategy to forecast cycling demand sought to offer additional nuance to these
segment-level estimates by accounting for the neighbourhood-level context surrounding
these facility types. Since AADBT cannot be a negative value, two tobit censored regression
models (Tobin 1958) with a lower limit set at zero were estimated. Thesemodels were itera-
tively specified using a dredging approach in which a base model with facility type was first
estimated, with neighbourhood-level characteristics related to the built environment and
socioeconomic composition then subsequently added in separate waves producing the
model with lowest log-likelihood statistic and selected neighbourhood predictors signifi-
cant at p≤0.05. In addition to the categorical variable for facility type, the second tobit
model included a set of dummy variables describing the 13 City of Cambridge neighbour-
hood planning groups in the initial estimation of a base model. The specification of group-
ing variables in the second model sought to help assuage concerns of spatial
autocorrelation and a violation of the independence in sample observations due to a clus-
tering of manual count locations, which could not be addressed by multilevel modelling
approaches because of the limited sample size. The coefficients produced by the two
models were then used to predict segment-level AADBT for all unobserved facilities,
including the GJP, by inserting the relevant spatial information.

4. Results

4.1. Neighbourhood context

Table 1 describes the built environment and socioeconomic neighbourhood-level
measures tested in the specification of the direct demand models of segment-level
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cycling activity in the study sample and area. In general, the street segment midpoints
associated with the study’s observed count locations tended to be in neighbourhoods
characterized by a higher employment concentration, more traditional street design,
and greater balance of job opportunities to residential population than the average
250-meter grid cell in Cambridge. The residential population surrounding the manual
count locations, in turn, was similar in its socioeconomic composition to the average
US Census block group, with the workforce in neighbourhoods near count locations
showing a comparable proclivity to cycle as the commuting population in the average
citywide block group.

Table 1. Summary of neighborhood-level built environment and socioeconomic indicators.

Built Environment Indicators Study Sample (n = 26) Study Area (n = 344)

Geography: 250-meter grid cell Min Mean Max Min Mean Max

Persons per acre 0.00 23.84 109.92 0.00 21.90 187.24
Jobs per acre 0.00 34.82 226.68 0.00 20.21 666.52
Activity (persons and jobs) per acre 0.00 58.65 242.02 0.00 42.11 675.91
Basic jobs per acre 0.00 6.35 105.05 0.00 2.67 141.97
Retail jobs per acre 0.00 4.26 24.74 0.00 1.92 112.05
Service jobs per acre 0.00 13.12 119.56 0.00 15.62 650.84
Employment entropy 1: 2-digit NAICS codes 0.00 0.50 0.85 0.00 0.37 0.85
Employment entropy 2: Basic, retail, service 0.00 0.45 0.93 0.00 0.30 0.99
Jobs-persons balance 0.00 2.14 19.35 0.00 11.72 1,707.69
Retail jobs-persons balance 0.00 0.22 1.69 0.00 0.40 50.90
Alpha index 0.00 0.78 1.00 0.00 0.67 1.00
Beta index 0.29 0.44 0.60 0.00 0.40 1.00
Gamma index 0.63 0.91 1.00 0.00 0.78 1.00
Connected node ratio 0.50 0.86 1.00 0.00 0.73 1.00
Rapid transit station within one-half mile 0.00 0.77 1.00 0.00 0.65 1.00
Sociodemographic and Economic Indicators Study Sample (n = 37) Study Area (n = 88)

Geography: US Census block group Min Mean Max Min Mean Max

Age distribution
Under 18 years 0.00 0.12 0.26 0.00 0.12 0.36
18–24 years 0.00 0.20 0.97 0.00 0.18 0.97
25–34 years 0.02 0.25 0.58 0.02 0.28 0.58
35–44 years 0.00 0.13 0.27 0.00 0.13 0.45
45–64 years 0.00 0.17 0.34 0.00 0.18 0.39
65 years and older 0.00 0.12 0.35 0.00 0.12 0.35

Educational attainment distribution
Less than bachelor’s degree 0.00 0.22 0.72 0.00 0.25 0.85
Bachelor’s degree 0.17 0.29 0.59 0.15 0.30 0.59
Graduate degree 0.18 0.50 0.81 0.11 0.48 0.81

Annual household income distribution
Under $15,000 0.00 0.11 0.55 0.00 0.11 0.55
$15,000 to $34,999 0.00 0.09 0.27 0.00 0.10 0.40
$35,0000 to $74,999 0.00 0.21 0.67 0.00 0.21 0.67
$75,0000 to $149,999 0.00 0.29 0.48 0.00 0.29 0.63
$150,000 and above 0.00 0.28 0.68 0.00 0.27 1.00

Race and ethnicity distribution
White, non-Hispanic 0.38 0.67 0.95 0.08 0.66 0.95
Hispanic or Latino 0.00 0.07 0.21 0.00 0.08 0.22
Black or African American 0.00 0.08 0.45 0.00 0.08 0.53
Asian 0.00 0.14 0.34 0.00 0.14 0.34
Other distinctions 0.00 0.05 0.55 0.00 0.05 0.55

Primary commute travel mode
Auto 0.08 0.32 0.59 0.00 0.32 0.62
Public transit 0.07 0.26 0.45 0.05 0.29 1.00
Bicycling 0.00 0.07 0.19 0.00 0.07 0.20
Walking 0.03 0.26 0.75 0.00 0.24 0.75
Other modes 0.00 0.09 0.21 0.00 0.08 0.21
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4.2. Cycling activity at observed count locations

The expansion of observed manual bike count data at 90 sampled locations into
AADBT by using long-duration automated counter information resulted in a
cycling activity estimate that better accounted for temporal and seasonal variations
in cycling activity. The bike-related infrastructure of one observation was not
obtained. Table 2 summarizes the AADBT at these manual bike count locations
by facility type as well as the confidence interval (CI) bounds used to produce
range estimates of other street segments.

In the study sample, 11 manual counts were conducted along local streets without a
designated bicycling facility. The estimated cycling demand for street segments of this
bike-related infrastructure description ranged between 22.65 and 86.78 AADBT, while
arterial roadways without a dedicated bicycling facility in the study sample could
expect between 256.84 and 404.95 AADBT. Of the three off-street infrastructure cat-
egories, sampled shared-use facilities – not including the proposed GJP – were estimated
to have the lowest average AADBT. Conversely, off-street, cycle tracks were estimated to
generate the highest activity levels; between 199.10 and 782.88 AADBT. Observed bike
count locations along approaches with an on-street, bike lane were estimated to have
an approximate AADBT of 603.44; less than one-half of the 1,223 (1,048 without the
local correction factor) average daily bicyclists that passed by the Broadway Eco-
Totem and its adjacent bike lane in 2016.

4.3. Modelled cycling demand forecasts

The estimation results of the direct bike demand model without neighbourhood group-
ing variables are shown in Table 3. The log-likelihood of this model specification with
facility type and neighbourhood-level indicators reflected a significant improvement
over the null model, which had a log-likelihood of −643.10. Modelled cycling demand
– represented by AADBT – at the observed manual count locations was likely to be
lower along local streets without any designated bike facility than off-street, shared-use
paths. In regard to neighbourhood-level determinants of cycling demand, street seg-
ments in a physical context with more jobs than residents and a residential population
earning between $75,000 and $150,000 (the median annual household income in Cam-
bridge from 2012 to 16 was $107,897) were more likely to generate higher values of
AADBT. Conversely, an increase in the average age of residents between 45 and 64
years in block groups surrounding a street segment resulted in a decrease in AADBT.
This latter finding parallels evidence that neighbourhoods with a younger population
are likely to have higher bike mode shares.

Table 2. Summary of annual average daily bicycle trips (AADBT) at observed manual bike count
locations.
Bike-related infrastructure designation n Median Mean SD Lower CI Upper CI

On-street, local functional class 11 58.11 54.71 47.73 22.65 86.78
On-street, arterial functional class 35 252.92 330.90 215.58 256.84 404.95
On-street, bike lane 31 464.09 603.44 459.32 434.96 771.92
Off-street, shared-use facility 8 261.26 259.45 138.66 143.53 375.37
Off-street, cycle track 5 490.30 490.99 235.08 199.10 782.88
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An alternative bike demand model including neighbourhood grouping indicators was
next estimated, with results provided in Table 4. This tobit model, which produced a log-
likelihood statistic of −603.31, had a different specification to the prior direct demand
model because its inclusion of neighbourhood grouping variables produces multicolli-
nearity effects with certain built environment and socioeconomic indicators. Of note,
the Area IV neighbourhood – including Kendall Square – is the reference case of this
model, with Agassiz (neighbourhood 8) and Strawberry Hill (neighbourhood 13) not iso-
lated in this specification because manual counts were not performed within these
boundaries. While street segments located within the second neighbourhood experienced
higher cycling demand than the Area IV neighbourhood, segments in five of the other
nine neighbourhoods were likely to experience lower AADBT, ceteris paribus. Addition-
ally, while facility type was not a significant determinant of AADBT in this alternative
model, street segments in 250-meter grid cells with strong street network connectivity
were negatively associated with cycling demand. A counterintuitive finding that may
be related to a conceivable barrier to cycling presented by frequent intersection crossings
and the increased possibility of conflicting vehicle turning movements. Finally, as

Table 3. Estimation results of the preferred direct bike demand model.
Indicators Coef. Std. Error p-value Lower CI Upper CI

Intercept 515.70 139.70 0.01 241.87 789.50
Intercept (log standard deviation) 5.51 0.08 0.01 5.35 5.67
Bike-related infrastructure designation
On-street, local functional class −251.50 121.90 0.04 −490.45 −12.63
On-street, arterial functional class −74.72 101.80 0.46 −274.34 124.90
On-street, bike lane 113.50 105.70 0.28 −93.71 320.80
Off-street, cycle track −89.87 150.50 0.55 −384.92 205.19
Jobs-persons balance 24.69 7.82 0.00 9.37 40.01
Age: 45–64 years −1,944.00 337.60 0.00 −2,605.57 −1,282.19
Household income: $75,0000 to $149,999 694.60 271.70 0.01 162.11 1,227.09

Notes: Log-likelihood =−610.32, df = 173.

Table 4. Estimation results of direct bike demand model with neighborhood planning groups.
Indicators Coef. Std. Error p-value Lower CI Upper CI

Intercept 921.20 263.90 0.01 403.90 1,438.51
Intercept (log standard deviation) 5.43 0.08 0.01 5.27 5.59
Bike-related infrastructure designation
On-street, local functional class −230.80 131.00 0.08 −487.56 26.06
On-street, arterial functional class −50.97 110.40 0.64 −267.35 165.42
On-street, bike lane 166.10 116.60 0.15 −62.55 394.67
Off-street, cycle track −54.73 140.80 0.70 −330.75 221.28

Neighborhood Planning Groups
1: East Cambridge −602.40 147.60 0.01 −891.56 −313.16
2: Area 2 (MIT) 289.20 128.10 0.02 38.02 540.31
3: Wellington-Harrington −86.73 161.20 0.59 −402.72 229.27
5: Cambridgeport −296.60 117.80 0.01 −527.52 −65.71
6: Mid-Cambridge −282.10 133.00 0.03 −542.85 −21.44
7: Riverside −273.40 132.00 0.04 −532.05 −14.75
9: Neighborhood 9 −138.50 141.00 0.33 −414.74 137.80
10: Neighborhood 10 −203.20 116.80 0.08 −432.08 25.73
11: North Cambridge −142.10 123.30 0.25 −383.69 99.51
12: Cambridge Highlands −387.20 158.20 0.01 −697.29 −77.17

Beta index −1,249.00 435.80 0.01 −2,102.87 −394.42
Age: 25–34 years 738.60 340.60 0.03 71.06 1,406.23

Notes: Log-likelihood =−603.31, df = 164.
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hypothesized, a street segment located in a block group with a higher residential demo-
graphic between 25 and 34 years of age was found to have an increased level of modelled
cycling demand.

Due to the incomplete spatial representation of manual count locations, only esti-
mation results from the first direct demand model are recommended to forecast
cycling activity on citywide street segments. Figure 2 visualizes this forecast AADBT
described in the model results of Table 3, using mean estimates and convenient
breakpoints.

4.4. Cycling demand forecasts for the grand junction pathway

Figure 3 visualizes the cycling demand forecast for the proposed GJP using the single-
point estimate from the facility-based summaries, preferred direct demand model
(Model 1), and direct demand model with neighbourhood grouping variables
(Model 2). The GJP is designed as a shared-use facility, which were projected to
have an AADBT estimate of 259.45 using an aggregated summary by facility approach.
This forecast is higher than the average cycling activity resulting from the second
direct demand model for both the GJP segment north of Main Street (145.08
AADBT) and its southern section (264.90 AADBT). Estimated activity for the north-
ern section in the preferred model was 447.05 AADBT, with the southern section that
parallels the cycle track along Vassar Street having an average forecast demand of
742.68.

Extrapolating the AADBT estimates of the preferred model and utilizing the fixed
Broadway Eco-Counter cyclist counts, it is possible to provide a peak hour volume esti-
mate based on 2016 conditions and activity patterns of an on-street, bike lane. Given
these caveats and others discussed in the subsequent section, a reasonable expectation
is for the northern section of the GJP to have a morning and evening peak period

Figure 2. Forecast cycling demand as annual average daily bicycle trips (AADBT).
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volume of up to 468 cyclists (1.95 bikes per minute) and the portion south of Main Street
to have 558 cyclists (2.33 bikes per minute).

5. Conclusions

The contributions of this research are twofold. First, by complementing previous manual
bike count efforts with archived automated bike counter data, one-hour observed counts
were expanded into an average daily cycling demand estimate, adjusted for temporal and
seasonal variation. Second, after translating annual average daily bicycle trips (AADBT)
to a segment-level estimate, three methods were then undertaken to forecast cycling
activity for all streets and paths in the study area. Of note, the two specified direct
demand models offered a requisite ability to predict bicyclist demand on an off-street,
shared-use facility such as the Grand Junction Pathway (GJP).

In all, our study findings offer public agencies a potential decision-support tool to
quantitatively identify the demand associated with proposed bike-infrastructure invest-
ments and evaluate the cycling activity generated by past investments or programmatic
interventions. This ability to generate a defensible forecast of cycling activity given the
unique context of the GJP or any other proposed bike facility is critical for planning
agencies given the growing competition amongst active transportation investments for
limited local and state financial resources. However, any estimation of bicycle volume
associated with the planned construction of a low-stress bike facility remains a challen-
ging task for several reasons. Those new cycling trips generated by travellers who prefer
riding along an off-street facility such as the GJP and existing trips that will be diverted to
the GJP from present bike facilities are not captured in this study’s modelled demand
estimates. As such, our cycling demand estimates are considered a conservative baseline
expectation that can be surpassed given a likelihood for the GJP to unlock a latent
demand among risk-averse cyclists, re-route current travel patterns, and be accompanied
by other local and regional bike infrastructure investments.

While offering value to ongoing and future active transportation planning processes,
this study also has several notable limitations and opportunities for advancement. Fore-
most, the manual counts were likely conducted at locations that were predetermined by
agency staff in an effort to underscore new opportunities or existing barriers to increasing

Figure 3. Forecast cycling demand for Grand Junction Pathway using three methods.
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cycling activity; as a result, introducing an upward bias to AADBT estimates based on
observed counts. Future collection efforts of the bike count programme may consider
a random assignment of manual count locations, with more observations and greater
spatial variation. The small sample of short-duration counts limited the ability of this
study to statistically control for spatial clustering of sites in its two direct demand
models, which could be better addressed applying a multilevel modelling approach.
Given a need to also offer greater variation in the time-of-day that counts are performed
– only peak period cycling was measured in this study sample, manual efforts to obtain
short-duration counts could be transitioned toward strategies using continuous auto-
mated technologies that are redistributed on a short-term schedule. A shift to this auto-
mated approach would allow time-of-day variation to be calculated at a randomly-
assigned count location rather than capturing this 15-minute increment variation
using the fixed Broadway Eco-Counter that likely has a different associated travel
pattern. Finally, an extension of this proposed data collection effort would permit
improvements to the bike direct demand models by incorporating precipitation- and
temperature-related variables, which are known to impact cycling activity. Yet, despite
these limitations and likely others, this research offers new insight into the cycling
activity expected from introducing an off-street bike-friendly facility to cyclists.
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