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A B S T R A C T

Chiefly led by Uber, on-demand ride-hailing services have transformed the urban American transportation
landscape in merely the past decade. Utilizing the proliferation of internet-enabled smartphones, this app-based
company has provided city inhabitants with a convenient and reliable door-to-door mobility service, which has
arguably improved car-based accessibility while also generating a host of negative environmental and societal
externalities. While to date the utilization of Uber has largely been an urban phenomenon, the lasting success of
this new mobility option likely rests within its ability to expand its services into suburban communities. Yet,
given the competitive nature of the ride-hailing marketplace and genuine concerns over passenger and driver
anonymity, transportation planners and urban policymakers have been stymied in their ability to access the
disaggregate data sets needed to help assess whether these services are in fact extending beyond city centers and
identify which factors may be contributing to any expansion into more peripheral suburban neighborhoods. By
introducing a creative strategy using the privacy-related suppression processes of Uber Movement data, this
study quantifies the continued expansion of Uber's ride-hailing service into outlying communities from 2016 to
2018 by employing a multilevel modeling approach to recognize the neighborhood-level socioeconomic and
built environment factors most related to this service expansion in three major American cities: Boston, San
Francisco, and Washington, DC.

1. Introduction

Since its introduction to American cities a decade ago, the adoption
of Uber as a ride-hailing service platform has substantially grown.
Uber's development—along with other private ride-hailing businesse-
s—has corresponded with the common adoption of internet-enabled
smartphones, which facilitate individuals to conveniently schedule the
door-to-door, on-demand vehicle services offered by such app-based
mobility services (Shaheen and Cohen, 2019; Anderson, 2014). How-
ever, this enhancement in auto transportation accessibility throughout
urban communities also generates defensible concerns regarding in-
creased traffic congestion (Erhardt et al., 2019), competition with more
sustainable mobility options (Gehrke et al., 2019), and other environ-
mental and societal consequences passed onto city residents, workers,
and visitors.

To date, ride-hailing services largely remain an urban phenomenon,
with sparse evidence to denote if these companies will be able to ex-
pand service availability into more peripheral suburban and rural areas
where residents are more dependent on private vehicles and traditional
taxi services (Schaller, 2018). An expansion into suburban neighbor-
hoods, where most of the population of American cities resides, will be
sought-after by private ride-hailing companies (Clewlow and Mishra,

2017) seeking economic viability. In response, researchers and policy-
makers, who generally lack access to meaningful data needed to iden-
tify and plan for the initial and immediate impacts of ride-hailing ser-
vices on more urban districts, will continue to look for new
insights—derived from various data sources and unconventional col-
lection methods—into the factors connected with service area expan-
sion or changes in the composition of ride-hailing adopters.

This study, which addresses this need for further empirical evidence
in the face of limited ride-hailing data availability, aims to confirm
whether Uber has in fact been successful in expanding it services be-
yond city centers and better understand what factors may be associated
with any identified service area expansion. Specifically, by using pub-
licly-available Uber Movement data for three similarly populated and
spatially distributed American cities across three time periods, this
study's objectives are to (i) measure the extent to which Uber service in
American cities is either increasing or plateauing with regard to service
area and (ii) identify neighborhood-level socioeconomic and built en-
vironment factors most associated with any changes to Uber service
area size.
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2. Literature review

This section synthesizes findings from past studies conducted in the
United States and Canada that examine the socioeconomic and en-
vironmental factors associated with ride-hailing service adoption. In
general, this evidence base has found that early adopters of ride-hailing
services have tended to be young, educated, and wealthy. An intercept
survey of ride-hailing passengers by Rayle et al. (2016) found survey
respondents were generally younger and better educated than an
average San Francisco resident; whereas, income distributions of pas-
sengers mimicked that of City residents, except for low-income house-
holds who were underrepresented. Henao and Marshall (2019), who
conducted an in-vehicle intercept survey, reported early ride-hailing
adopters in Denver had comparable socioeconomic characteristics
when matched to the City's population. Clewlow and Mishra (2017)
noted only 4% of survey respondents in seven metro regions aged 65
and older had utilized ride-hailing services in comparison to 36% of
respondents aged 18 to 29 years, with college-educated, affluent
Americans adopting ride-hailing services at double the rate of less
educated, lower income populations. In Boston, Gehrke et al., 2018
found a majority of ride-hailing passengers were under 35 years old,
had at least a four-year college degree, and were White, non-Hispanic/
Latinx. Yet, ride-hailing adoption was popular on both tails of the in-
come spectrum, with those households in the lowest income cohort
more likely to substitute ride-hailing for travel via transit (Gehrke et al.,
2019).

In general, early ride-hailing adopters were more likely to be male;
however, mixed results concerning race and ethnicity are evident in the
literature. Feigon and Murphy (2018) noted that zip codes with higher
levels of high-income households, young adults, White residents, and
educational attainment were more likely to adopt ride-hailing services
in five metro regions including Washington, DC. In a study of predictors
of ride-hailing adoption in California, Alemi et al. (2018a) discovered
that younger, better-educated individuals and individuals of non-His-
panic origin were more likely to adopt on-demand services. Analyzing
National Household Travel Survey data, others have found that higher
income households use ride-hailing services more often, as do males,
individuals aged between 20 and 40 years, and Asian individuals, who
also tend to earn more than White individuals in the United States
(Conway et al., 2018). Although in a study of 6.3 million Lyft trips in
Los Angeles, Brown (2019) found that US Census tracts of Asian or
Hispanic majority had a negative association with neighborhood-level
Lyft trip frequency.

Early ride-hailing adopters also tended to have lower rates of per-
sonal car ownership. In her aforementioned study, Brown (2019) found
that neighborhoods with a higher share of zero vehicle households and
residents aged 15–34 years positively predicted neighborhood-level
Lyft trip frequency in Los Angeles. Likewise, Feigon and Murphy (2018)
noted zip codes with smaller household sizes and fewer vehicles per
household had higher ride-hailing adoption rates. In Toronto, Young
and Farber (2019) described ride-hailing adoption as largely a younger
generation phenomenon, with a majority of ride-hailing passengers also
being wealthy and having lower car ownership rates. The latter finding
may be partially explained by the downtown study area in which
households living in this planning district were more likely to have low
car ownership rates to begin with.

Given the above socioeconomic findings, it's no surprise that early
ride-hailing adopters tended to not have children and resided in smaller
households. Employing a latent class choice modeling approach, Alemi
et al. (2018b) found the market segment of higher-educated, in-
dependent millennials who lived in urban areas without children were
most inclined to adopt ride-hailing services. Meanwhile, Spurlock et al.
(2019) noted that younger generations were both more likely to have
already adopted both single and pooled ride-hailing services, but that
individuals with a higher-income were only significantly more likely to
have adopted non-pooled ride-hailing services and that having children

under 8 years old had a significant negative impact on the interest in
adopting pooled services.

As for environmental context, ride-hailing service adoption to-date
has been a largely urban phenomenon. Clewlow and Mishra (2017)
noted 29% of survey respondents who resided in urban neighborhoods
had adopted ride-hailing services and continue to adopt these services
more regularly, while only 7% of suburban residents utilize them to
travel within their metro region. In quantifying a previously unknown
ride-hailing service market size in San Francisco, Cooper et al. (2018)
discovered ride-hailing trip origins and destinations were concentrated
in the most developed, northeastern quadrant of the City. Conway et al.
(2018) found at highest densities, residents were far more likely to
adopt ride-hailing services; positing this relationship to be the result of
more nearby destinations, which make these services relatively in-
expensive and associated wait/travel times shorter.

Finally, the evidence base has largely concluded that ride-hailing
service adoption has adversely impacted areas with strong local and
regional accessibility. In a pair of studies, Alemi et al. (2019) found an
increase in activity density (number of jobs and housing units per acre)
at the block group-level predicted an increase in ride-hailing frequency,
and that increased land use mixing and regional auto accessibility also
increased the likelihood of service adoption (Alemi et al., 2018a).
Echoing the former finding, Brown (2019) concluded that neighbor-
hoods with higher levels of activity density were predictive of increased
neighborhood-level Lyft trip frequency in Los Angeles, as were factors
related to increased transit density and road network density. Gehrke
et al., 2019 discovered that residing in a zip code with a high em-
ployment-to-population ratio was more likely to predict the substitution
of ride-hailing services for walking, biking, transit, or no travel at all
than the substitution of ride-hailing services for vehicle travel. Also,
residents of environments with a gridded street network, as described
by a high connected node ratio (defined as ratio of three- and four-way
intersections to all intersections) and low gamma index (defined as
ratio of observed street links to maximum number of possible street
links), were more likely to substitute ride-hailing services for transit
than they were to substitute ride-hailing for travel in another auto ve-
hicle.

This study intends to build upon the reviewed literature by ad-
dressing a handful of identified gaps. Foremost, this study investigates
ride-hailing adoption using a panel data set collected for multiple cities;
an improvement over most previous work that has analyzed cross-sec-
tional data. Another contribution of this study is its examination of ride-
hailing service area growth; an aggregate outcome unique from current
literature that often investigates individual responses to ride-hailing
introduction whether it be adoption or frequency of use. Finally, past
studies have generally focused on a narrow selection of neighborhood-
level socioeconomic and built environment features in their analyses.
This multi-city study, in turn, investigates the neighborhood effects of
many socioeconomic characteristics—often only inspected at an in-
dividual-level—as well as a robust list of built environment features
describing a neighborhood's land development patterns, urban design,
and transportation system on Uber service area growth over multiple
time periods.

3. Methods

3.1. Data

Introduced in January 2017, Uber Movement (UM) was launched by
Uber Technologies, Inc. as a platform for the ride-hailing company to
share anonymized and aggregated travel time information with plan-
ning agencies and researchers eager to gain insight into the impact of
the mobility service on their cities (Gilbertson, 2017). These zone-to-
zone travel times, which are synthesized from GPS trace pings collected
every four seconds from an Uber driver's smartphone, are made avail-
able at a census tract or traffic analysis zone geography and are the
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product of a six-step process to ensure ride-hailing rider privacy is
preserved. One step in this process is the suppression of travel time
information for zone-to-zone pairings that either do not meet a
minimum number of trips or a minimum count of unique riders (Uber
Technologies, Inc., 2019). The likelihood of any zone-to-zone pairing
failing to meet either of these criteria increases as the UM platform user
specifies a more restricted period (i.e., smaller hour-by-hour or day-of-
the-week time increments) for their travel time query. Accordingly,
with a refined search of travel time information across unrelated time
points, a UM platform user can view how the distribution of destination
zones with published UM travel data changes for any given origin zone.
When assessed for many origin zones, this more refined search of UM
data can provide information about the expanse and robustness of the
Uber network in a city.

In fact, an identification of the ride-hailing company's network ex-
pansion is likely one of the few areas of insight that can be gleaned from
the publicly-available UM data set, whose utility is limited beyond a
basic understanding of aggregate mode-specific travel patterns, times,
and speeds, for a select number of cities. Hence, these data have been of

minimal benefit to transportation planners and researchers who need
robust data on trip volumes between zones; average travel distances
with and without a rider; disaggregate locations of trip pick-ups and
drop-offs; and attributes of the vehicle, driver, rider, and trip context to
inform nuanced policy and research questions. Regrettably, Uber, Lyft,
and other ride-hailing services are reluctant to provide these desirable
insights to decisionmakers, and few state or local governments have
mandates requiring this information to be reported to those agencies
who can address their continued impact on cities. A pair of notable
exceptions can be found in New York City, where Uber is mandated to
provide the Taxi and Limousine Commission with spatiotemporally
disaggregate trip information in order to operate on the City's streets,
and Massachusetts, where Uber and other ride-hailing companies have
been required to report municipal-level trip and safety data to the
Commonwealth's Department of Public Utilities.

For this study, the author leveraged the travel time data suppression
steps used for the public UM data sets to analyze how Uber's service
area has changed in three cities: Boston, Massachusetts; San Francisco,
California; and Washington, District of Columbia. These cities were

Fig. 1. Three-year Uber service area expansion for morning peak passengers from Boston's Downtown Crossing.
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chosen based on similarities in population size and the arrival of Uber
to their markets as well as differences in their spatial distribution.
Travel times were collected for every census tract in the three city
boundaries for the morning peak period (6-10 am) on weekdays in
March 2016, 2017, and 2018. Morning peak period was analyzed, as
this travel time reflects a routine pattern of high-volume auto traffic
where an increased Uber service area would suggest further roadway
congestion and decline in sustainable travel mode adoption for com-
muting purposes. The month of March was chosen because it was the
most current month with available UM data at the time of data

collection and adequately exemplifies typical travel conditions as there
are no holidays, schools are in session, and weather in the three cities is
mild. From the downloaded files, the number of destination tracts with
unsuppressed travel time information (Uber service area) for a parti-
cular origin tract was provided for the three time periods. Fig. 1 pro-
vides an illustration of change in Uber service area from 2016 to 2018
for one census tract in downtown Boston. From this origin, there were
528 census tracts with unsuppressed travel time information in March
2016, 629 destination census tracts in March, 2017, and 660 destina-
tion census tracts in March 2018; while, three census tracts contracted

Fig. 2. Census tract-level illustration of Uber service area expansion for March 2018 in three American cities.
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between 2016 and 2017, another three census tracts contracted be-
tween 2016 and 2018, and 30 census tracts between 2017 and 2018.

Extending this strategy for conceptualizing Uber service area, a next
step was to operationalize a measure (Uber service area ratio) that
could be analyzed to identify the neighborhood-level predictors of
service expansion (or contraction). Given that spatial information is not
published by UM for all census tracts within each city's metropolitan
region, to limit spatial attenuation effects, only census tracts in the
three city boundaries were considered as origins. There were 196 origin
tracts in San Francisco, while Boston and Washington, DC each had 179
origin census tracts with travel time information for a set of tract-level
destinations. Uber service area for a census tract was quantified as the
count of destinations with unsuppressed data divided by the census
tract in its city with the highest count of destination tracts of any year.
Using the example in Fig. 1, where 528 census tracts had unsuppressed
travel time information in 2016, 629 in 2017, and 660 in 2018 for the
Downtown Crossing census tract, these three counts were then nor-
malized by the maximum count of destinations with unsuppressed in-
formation for any origin tract in Boston over the three periods
(n = 712) to create an Uber service area ratio of 0.74 in 2016, 0.88 in
2017, and 0.93 in 2018. This destination ratio was computed for every
census tract in the three study cities and was the dependent variable in
this study's analytic approach described in Section 3.2.

All independent variables examined in this study were similarly
measured at a 2010 US Census geography and reflected the socio-
economic context and built environment of this neighborhood unit.
Demographic data on the share of residents in a census tract by dif-
ferent sex, age, education, and race or ethnicity categories as well as
neighborhood-level data on annual household income, tenure of occu-
pied housing units, and household vehicle ownership rates were de-
rived from 2013 to 2017 American Community Survey (ACS) Five-Year
Estimates. These socioeconomic variables were complemented by a set
of built environment metrics of the origin tract describing its land de-
velopment patterns and transportation system (Gehrke and Welch,
2017). Specifically, measures of density (population, employment, and
activity density), land use mix (jobs-population ratio), urban design
(intersection density and connected node ratio), and transportation
infrastructure (percent of primary, secondary, and local roadways) for
each census tract were constructed using ACS data along with 2015
Longitudinal Employer-Household Dynamics (LEHD) Origin-Destina-
tion Employment Statistics and 2018 Topologically Integrated Geo-
graphic Encoding and Referencing (TIGER) data sets.

3.2. Analytic approach

Hierarchical linear models are an extension of multiple linear re-
gression models which account for distinct unexplained sources of
variability at each level of a specified nesting structure (Snijders and
Bosker, 2012). The dependent variable of interest, Uber service area, is
a continuous measure of repeated census tract-level observations where
inference strength for one time period or group is borrowed from data
for the other groups. Accordingly, the independent observations as-
sumption is violated and a multilevel model to account for the variation
at the group-level is suggested. This study adopts the simpler case of a
random intercept model with two levels in its nesting structure to ac-
count for the within-group variation across different census tracts and
between-group variations of the three time periods.

The random intercept model has two components which enable the
testing of multiple fixed effects—the various aforementioned socio-
economic context and built environment variables—and the random
effect or heterogeneity of regression slopes for the three different
groups. The following model form describes a random intercept mul-
tilevel model (Snijders and Bosker, 2012):

= + + +Y x x Rij j ij ij ij0 1 2 (1)

= + Uj j0 00 0 (2)

where, Yij is the continuous outcome of Uber service area for census
tract (level-one unit) i of time period (level-two unit) j. In Eq. (1), β1 and
β2 are non-stochastic coefficients of the level-one socioeconomic and
built environment predictors, respectively. β0j is a level-two random
intercept containing the average intercept γ00 with the group-level
deviation U0j. Both random model parts, U0j and the observation-level
deviation Rij, are mutually independent with zero means given the
values of predictors xij. The residuals are drawn from normally dis-
tributed populations with the variance of level-one residuals denoted by
σ2 and level-two residuals denoted by τ02.

Each of the three city-specific multilevel models and the multi-city
pooled model employed a maximum likelihood estimator. Model spe-
cification used a backwards-elimination process with variables in the
pooled data set that were strongly correlated with each other or weakly
correlated with the dependent variable removed from consideration in
all models, as a first step. Next, level-one predictors that were not
statistically significant (p < 0.10) of Uber service area were then
iteratively removed from the full model until all predictors were sig-
nificant and the elimination of a predictor resulted in a log-likelihood
ratio test (LRT) between the tested model and a prior specification that
was non-significant (p > 0.05). The iterative process described in the
last two sentences was then repeated for each city-specific model with
variables in each city's data set until a final model was determined.
Unlike the city-specific models, the specification process for the pooled
three-city model started with an empty model with a level-one dummy
variable for San Francisco and Washington, DC, which enabled the
testing of city-level differences in Uber service area expansion. By es-
timating this pooled model, insights into the neighborhood-level de-
terminants of Uber service area change across three time periods were
provided for multiple cities, offering greater sample heterogeneity and
potentially more generalizable findings.

4. Results

4.1. Descriptive statistics

Fig. 2 provides citywide visualizations of Uber service area expan-
sion for the three cities investigate in this study. In Boston, the origin
census tract with the most destination tracts with unsuppressed travel
time information—quantified by a ratio value of one and reflected by
the darkest color shade—was Logan International Airport, located in
the northeastern corner of the city. Other areas in Boston with high
Uber service area expansion during the morning peak period include a
stretch along the Charles River extending eastward from the Allston
neighborhood in the northwest to the city's downtown districts and
along the I-93 corridor south to Dorchester. In San Francisco, two
census tracts in the South of Market neighborhood had the highest ra-
tios of Uber service area expansion. The Financial District to the north
and census tracts located near US-101 in the Mission District and Por-
tola neighborhoods to the south were also observed to have far-
reaching Uber service areas. Finally, in Washington, DC, Uber service
area ratios were highest for census tracts covering the National Mall
and the city's downtown districts.

Temporal insights into the Uber service area extent across the three
cities can be gleaned from examining the descriptive statistics provided
in Table 1. In each city, the average Uber service area ratio for all origin
census tracts during the morning peak period increased from March
2016 to March 2017 and March 2017 to March 2018. The average
service area expansion across these cities was highest during the first
interval, with ratios across the three time periods being nearly identical
in magnitude for Boston and San Francisco. However, the average Uber
service area ratio for Washington, DC census tracts was highest, which
may signify less tract-to-tract variation within its city boundary than
the former two cities. The range of Uber service area ratios was 0.13 to
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0.77 in 2016, 0.17 to 0.95 in 2017, and 0.17 to 1 in 2018 for Boston; 0
to 0.80 in 2016, 0 to 0.93 in 2017, and 0 to 1 in 2018 for San Francisco;
and 0.24 to 0.92 in 2016, 0.31 to 0.99 in 2017, and 0.38 to 1 in 2018 for
Washington, DC. The Uber service area ratios for all census tracts in-
creased or remain unchanged from March 2016 to March 2018; how-
ever, 11 (6%) origin tracts in Boston, 4 (2%) of tracts in San Francisco,
and 1 (<1%) of tracts in Washington, DC had a contracted service area
between March 2017 and March 2018.

The remaining variables described in Table 1 represent the tract-
level predictors of socioeconomic context and the built environment
tested in the multilevel models. In terms of socioeconomic context, the
average share of census tract residents in San Francisco are male, while
tracts in Boston and Washington, DC tend to be female majority. Unlike
San Francisco, the average share of residents in census tracts of these
latter two cities are mostly under 35 years old and most likely to report
an annual household income below $35,000. In contrast, the average
census tract in San Francisco was most likely to have the highest share
of households earning more than $150,000, annually. San Francisco
and Boston tracts were most likely to have the highest share of residents
reporting to be White (non-Hispanic), while the largest share of DC
residents reported being Black/African American. Across all cities, the
average census tract had a higher share of renter-occupied housing

units and one-car households. Turning to the built environment, census
tracts in San Francisco tend to have higher rates of population and
employment density, whereas, Boston tracts have the smallest share of
local roads and greatest density in intersections. Washington, DC has
the highest jobs-person ratio per census tract and a more traditional
grid-based street network, reflected by its high mean connected-node
ratio, of the three cities. Over three-quarters of tracts in Washington,
DC and Boston intersect a one-half-mile areal buffer surrounding sta-
tions of their respective regional rail transit systems, while one-third of
tracts in San Francisco intersect a Bay Area Rapid Transit station
walkshed.

4.2. Modeled predictors of Uber service area expansion

4.2.1. Individual city models
The results of three city-specific random intercept multilevel models

of Uber service area expansion are shown in Table 2. Each final model
specification included both significant socioeconomic context and built
environment predictors and was found to produce a significant im-
provement in model fit from the empty (base) model specification. The
final Boston model produced a log likelihood statistic of 550.86 versus
the base model, which produced a log likelihood of 258.46

Table 1
Descriptive statistics for census tracts in three cities.

Variable Boston, MA San Francisco, CA Washington, DC

Mean St. Dev. Mean St. Dev. Mean St. Dev.

Uber service area^
2016 0.36 0.13 0.35 0.13 0.49 0.13
2017 0.42 0.16 0.42 0.15 0.60 0.15
2018 0.46 0.16 0.46 0.16 0.68 0.13

Socioeconomic context
Sex: Share of male residents 0.47 0.11 0.51 0.07 0.48 0.06
Sex: Share of female residents 0.50 0.11 0.48 0.07 0.52 0.06
Age: Share of residents less than 18 years old 0.15 0.09 0.13 0.06 0.18 0.09
Age: Share of residents 18–34 years old 0.38 0.20 0.30 0.11 0.34 0.15
Age: Share of residents 35–44 years old 0.12 0.05 0.16 0.04 0.14 0.05
Age: Share of residents 45–64 years old 0.20 0.08 0.25 0.06 0.22 0.06
Age: Share of residents 65 years old or more 0.11 0.11 0.15 0.07 0.12 0.06
Education: share of adults less than Bachelor's 0.34 0.18 0.35 0.15 0.32 0.18
Education: share of adults Bachelor's 0.18 0.12 0.27 0.10 0.17 0.09
Education: share of adults Master's or PhD 0.15 0.12 0.18 0.10 0.23 0.16
Race/ethnicity: white, non-Hispanic 0.46 0.30 0.42 0.22 0.34 0.29
Race/ethnicity: black/African American 0.23 0.26 0.06 0.09 0.50 0.35
Race/ethnicity: asian 0.09 0.10 0.32 0.19 0.04 0.04
Race/ethnicity: latinx/Hispanic 0.08 0.09 0.06 0.04 0.04 0.04
Race/ethnicity: other distinctions 0.12 0.10 0.13 0.09 0.07 0.06
Income: share of households less than $35,000 0.32 0.18 0.23 0.15 0.29 0.18
Income: share of households $35,000–$75,000 0.23 0.10 0.19 0.07 0.22 0.08
Income: share of households $75,000-150,000 0.24 0.12 0.27 0.08 0.26 0.09
Income: share of households $150,000 or more 0.16 0.13 0.31 0.15 0.23 0.18
Tenure: share of owner-occupied housing units 0.34 0.22 0.39 0.24 0.42 0.22
Tenure: share of renter-occupied housing units 0.62 0.24 0.61 0.24 0.57 0.23
Vehicles: share of households 0 cars 0.23 0.17 0.21 0.19 0.25 0.15
Vehicles: share of households 1 car 0.39 0.13 0.36 0.13 0.43 0.11
Vehicles: share of households 2 cars 0.24 0.15 0.27 0.13 0.24 0.12
Vehicles: share of households 3 cars or more 0.09 0.11 0.15 0.14 0.08 0.08

Built environment
Persons per acre 39.19 28.32 48.22 34.96 28.08 18.95
Jobs per acre 27.59 65.69 32.13 75.04 19.76 54.74
Persons and jobs per acre 66.78 74.01 80.34 87.54 47.84 58.02
Jobs-population ratio 2.47 10.38 1.37 6.01 5.63 59.91
Intersections per acre 0.50 0.28 0.38 0.18 0.27 0.15
Connected node ratio 0.83 0.11 0.90 0.12 0.92 0.09
Percent of primary roads 0.02 0.06 0.02 0.05 0.02 0.06
Percent of secondary roads 0.06 0.10 0.02 0.05 0.03 0.07
Percent of local roads 0.91 0.13 0.96 0.09 0.95 0.09
Half-mile rapid transit shed 0.76 0.43 0.34 0.47 0.78 0.42

Notes. ^ For each Census tract, the count of destination tracts with Uber Movement travel times for the AM peak period of weekdays in March, normalized by the tract
with the highest count in each city.
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(LRT = 584.79, p < 0.01). For San Francisco, the base model log
likelihood was 279.80 (LRT = 590.27, p < 0.01); while, the empty
model for Washington, DC produced a statistic of 309.49
(LRT = 677.45, p < 0.01).

4.2.1.1. Boston, MA. In Boston, an increase in the share of residents
under 18 years of age in a census tract was found to be negatively
associated with Uber service area expansion across the three time
periods, with a one unit increase in the share of this characteristic
predicting a decrease in Uber service area ratio by 0.19 units
(β = − 0.19, SE = 0.05). In turn, tracts with a higher share of zero-
car households (β = 0.05, SE = 0.03) and a adults with an advanced
university degree (β = 0.07, SE = 0.03) observed a significant
expansion in Uber service area during the weekday morning peak
period over the three time periods. As for tract-level built environment
predictors of service area expansion, an increase in job density
(β = 0.39, SE = 0.07) and share of primary (β = 1.44, SE = 0.07)
or secondary (β = 0.26, SE = 0.04) roads were found to be significant
in the Boston model. Census tracts within a half-mile walkshed of a
rapid transit station were positively associated with three-year Uber
service area expansion during the morning peak (β= 0.06, SE= 0.01).

Many of the socioeconomic context findings are perhaps un-
surprising and corroborate results from individual-level studies that
highlight individuals with higher educational attainment and without
access to a personal vehicle were early adopters of ride-hailing services.
However, the negative relationship of Uber service area growth in
neighborhoods with higher rates of children—a finding corroborated in
the reviewed literature—potentially points to the industry's cooler re-
ception by residents of Boston's suburban neighborhoods; at least in this
initial stage of ride-hailing adoption. Nevertheless, a continued ex-
pansion of Uber's service area in Boston's densest areas and in neigh-
borhoods with good access to Massachusetts Bay Transportation
Authority rapid transit station should be of concern to public officials
vested in promoting public transit and reducing roadway congestion.

4.2.1.2. San Francisco, CA. Also, in the San Francisco model, high-
capacity roadways—primary (β = 1.87, SE = 0.08) and secondary

(β = 0.37, SE = 0.08) designations—were significant predictors of a
neighborhood's morning peak period service area expansion.
Neighborhoods with high employment density (β = 0.58,
SE = 0.06), increased density of roadway intersections (β = 0.05,
SE = 0.02), and which are located in close proximity to a rapid transit
station (β = 0.03, SE = 0.01) were similarly found to have more
destination tracts with unsuppressed Uber travel time information. As
for neighborhood socioeconomic characteristics, tracts with a higher
share of zero-car households (β = 0.17, SE = 0.03) and residents with
advanced college degrees (β = 0.12, SE = 0.04) were associated with
an increase in Uber service area across the three periods. Uber service
area expansion during the morning peak period in San Francisco was
also evident in tracts with a higher share of residents between 18 and
34 years old (β = 0.15, SE = 0.04) as well as residents between the
ages of 35 and 44 years (β = 0.38, SE = 0.10).

Largely echoing the Boston case study, San Francisco's most urban
neighborhoods—characterized by a traditional gridded street network,
high concentration of jobs, and strong access to the region's network of
rail stations—witnessed the greatest growth in Uber service area cov-
erage during the morning peak periods in March 2016, March 2017,
and March 2018. However, those neighborhoods with a higher rate of
households living car-free had a stronger association with Uber service
area expansion than neighborhoods in Boston, partially supporting a
hypothesis that access to this emergent mobility service may be al-
lowing residents to forego personal vehicle ownership. Moreover,
neighborhoods with a higher share of residents between 35 and
44 years old had a greater increase in the adoption of ride-hailing
services for longer trips than their millennial generation counterparts;
perhaps, underscoring an expanding demographic market for ride-
hailing utilization in San Francisco.

4.2.1.3. Washington, DC. The final city-specific model had the greatest
number of neighborhood predictors of Uber service area expansion.
Regarding the built environment, an increase in tract-level job density
(β = 0.56, SE= 0.07), intersection density (β= 0.09, SE= 0.03), and
connected node ratio (β = 0.09, SE = 0.04) had a significant positive
link to higher Uber service area ratios in Washington, DC. As for

Table 2
Results for three city-specific random intercept multilevel models of Uber service area expansion.

Effect Variable Boston, MA San Francisco, CA Washington, DC

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Random Intercept: Level 2 0.04 0.04 0.08
Residual: Level 1 0.08 0.03 0.08 0.03 0.07 0.03

Fixed Intercept: Level 1 0.32*** 0.03 0.16*** 0.03 0.16** 0.07
Socioeconomic context
Sex: Male 0.37*** 0.06
Age: Less than 18 years old −0.19*** 0.05
Age: 18–34 years old 0.15*** 0.04
Age: 35–44 years old 0.38*** 0.10
Age: 45–64 years old −0.19*** 0.07
Education: Master's or PhD 0.07** 0.03 0.12*** 0.04 0.05* 0.03
Income: $35,000-75,000 −0.15** 0.06
Vehicles: 0 0.05* 0.03 0.17*** 0.03 0.16*** 0.03
Vehicles: 1 0.18*** 0.03
Built environment
Jobs per acre (x1,000) 0.39*** 0.07 0.58*** 0.06 0.56*** 0.07
Intersections per acre 0.05** 0.02 0.09*** 0.03
Connected node ratio 0.09** 0.04
Percent of primary roads 1.44*** 0.07 1.87*** 0.08 1.09*** 0.06
Percent of secondary roads 0.26*** 0.04 0.37*** 0.08 0.37*** 0.06
Half-mile rapid transit shed 0.06*** 0.01 0.03*** 0.01 0.06*** 0.01
Summary statistics
Number of observations 537 588 537
Number of groups (years) 3 3 3
Log likelihood 550.86 618.52 604.62

Notes. * p-value <.10, ** p-value <.05, and *** p-value <.01.
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transportation access, census tracts with a higher proportion of primary
(β = 1.09, SE = 0.06) and secondary (β = 0.37, SE = 0.06) roads in
addition to neighborhoods within a half-mile walkshed of a Washington
Metropolitan Area Transit Authority rail station (β = 0.06, SE = 0.01)
were all associated with three-year Uber service area expansion during
the morning peak.

Neighborhoods with a higher share of residents in the 45 to 64 age
cohort (β = − 0.19, SE = 0.07) were found to have lower levels of
Uber service area expansion in the morning peak, as were census tracts
with a greater proportion of households earning between $35,000 and
$75,000 (β = − 0.15, SE = 0.06). In contrast, tracts with a higher
share of zero-car (β = 0.16, SE = 0.03) and car-lite (β = 0.18,
SE = 0.03) households positively predicted an extended Uber service
area. However, unlike Boston and San Francisco, an increase in the
proportion of adult residents with advanced college degrees (β = 0.05,
SE = 0.03) was only marginally significant in Washington, DC census
tracts. Also, unique to this city-specific model, an increase in the share
of male residents was associated with an increased Uber service area
ratio; a study finding that warrants future investigation, but which
supports the reviewed evidence that early ride-hailing adopters were
more likely to be male.

Of the three cities in this study, the reluctance of certain market
segments to adopt Uber appeared most pronounced in Washington, DC,
where census tracts with more middle-aged residents and households
reporting a modest annual income had a negative relationship with
service area expansion over time. As with the other cities, neighbor-
hoods with good rail transit access were more likely to experience a
growth in new destination tracts served by Uber during the morning
peak period over the three time periods, which suggests the new mo-
bility service's growing competitive edge over transit during popular
commute times.

4.2.2. Pooled cities model
A fourth random intercept multilevel model was next estimated for

the pooled three-city data set with city-level control fixed effect vari-
ables to understand what census tract-level factors of Uber service area
expansion may be common across the study areas. Table 3 provides the
results of the final model specification, which significantly improved
upon the specification with only city-level dummy variables
(LRT = 1,563.91, p < 0.01). The significant coefficient for the San
Francisco and Washington, DC control variables points to citywide
differences in morning peak period Uber service area growth with the
reference case of Boston; offering further justification for estimations of
the three city-specific models. However, a smaller coefficient for the
San Francisco dummy variable highlights the closer parallels that San
Francisco and Boston have regarding temporal trends in Uber's growing
popularity and reach.

Looking at the different level-one socioeconomic context predictors
of Uber service area expansion across the three years, tracts with a
higher share of households earning between $35,000 and $75,000
(β = − 0.08, SE = 0.03) experienced smaller service areas.
Meanwhile, neighborhoods with a higher proportion of residents be-
tween 18 and 34 years of age (β = 0.08, SE = 0.02), residents with
higher educational attainment (β = 0.13, SE = 0.02), and households
without a private vehicle (β = 0.11, SE = 0.02) were associated with
farther-reaching Uber service areas. As for the built environment con-
text, neighborhoods with higher levels of job density (β = 0.53,
SE=0.04), more jobs than residents (β=0.12, SE=0.07), heightened
street network connectivity (β = 0.05, SE = 0.02), and stronger access
to primary (β= 1.38, SE= 0.04) and secondary (β= 0.29, SE= 0.03)
roads were linked to greater Uber service areas during the morning
peak period. As with each of the city-specific models, tracts intersecting
a half-mile walkshed of a rapid transit station (β = 0.06, SE = 0.01)
were also associated with an increase in Uber service area expansion.

5. Conclusions

This study has contributed to a limited but growing evidence base
seeking to identify the extent to which ride-hailing services are chan-
ging America's transportation landscape by examining the growth of
Uber's service area. By introducing a creative strategy to utilize the
privacy-related suppression processes of a rare publicly-available data
set (Uber Movement), the author was able to quantify the continued
expansion of Uber services into outlying communities and recognize the
neighborhood-level socioeconomic and built environment factors most
associated with this expansion in three major American cities.
Descriptively, this rise in service area coverage for the morning peak
period was greatest between 2016 and 2017 for all three cities, with
Boston and San Francisco tracts displaying comparable rates of growth
and Washington, DC experiencing a stronger yet more uniformed dis-
tribution in service area expansion over the three-year period. An ex-
panding service area that is likely accompanied by increased tech-
nology adoption and lengthier ride-hailing vehicle trips that have
notable environmental and societal implications including more traffic
congestion (Erhardt et al., 2019) and energy consumption (Wenzel
et al., 2019) as well as lower financial resources for more sustainable
and affordable mobility options (Gehrke et al., 2018).

These challenges faced by city leaders appear more daunting when
assessing this study's multilevel model results that find walkable areas
with high levels of activity density are experiencing the greatest in-
crease in service area expansion. In Boston, San Francisco, and
Washington, DC, census tracts with high employment density—like
those located in central business districts—and those characterized by
strong public transit access were the most likely to have higher service
area ratios during the morning commute period. A finding which fits
the growing narrative of direct mode competition between ride-hailing
and public transit services, resulting in the loss of passengers using the
latter more sustainable mobility option (Gehrke et al., 2019; Graehler

Table 3
Results for pooled three-city random intercept multilevel models of Uber ser-
vice area expansion.

Effect Variable Coef. Std. Err. t-value p-value

Random Intercept: Level 2 0.06
Residual: Level 1 0.08 0.03

Fixed Intercept: Level 1 0.21 0.04 5.41 <0.01
City
Boston, MA^
San Francisco, CA 0.04 0.01 6.26 <0.01
Washington, DC 0.17 0.01 28.16 <0.01
Socioeconomic context
Age: 18–34 years old 0.08 0.17 4.47 <0.01
Education: Master's or
PhD

0.13 0.02 6.71 <0.01

Income: $35,000-
75,000

−0.08 0.03 −2.69 <0.01

Vehicles: 0 0.11 0.02 6.19 <0.01
Built environment
Jobs per acre (x1,000) 0.53 0.04 13.53 <0.01
Jobs-population ratio
(jobs x1,000)

0.12 0.07 1.81 <0.10

Connected node ratio 0.05 0.02 2.43 <0.05
Percent of primary
roads

1.38 0.04 33.68 <0.01

Percent of secondary
roads

0.29 0.03 9.01 <0.01

Half-mile rapid transit
shed

0.06 0.01 10.42 <0.01

Summary statistics
Number of observations 1662
Number of groups
(years)

3

Log likelihood 1626.50

Notes. ^ Reference category.
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Jr. et al., 2019); although, the positive coefficient could highlight some
synergies of Uber as a possible first and last mile connection to rapid
transit services. Additionally, transportation infrastructure access had
the strongest effect size of Uber service area growth in the pooled and
all city-specific models. An intuitive outcome also highlighting the
likelihood that ride-hailing services add to traffic congestion on primary
and secondary roads, which may consequently reduce the efficiency of
buses or streetcars without dedicated lanes of travel. In response, city
planners and officials must continue to pursue the effectiveness of
roadway pricing schemes or similar policies aimed at properly assessing
the growing negative externalities of popular ride-hailing services.

In regard to the socioeconomic factors of Uber service area expan-
sion, neighborhoods with a higher share of residents with advanced
college degrees or fewer vehicles were most characteristic of larger
service areas. Considered conjointly, these city-specific results and
pooled model findings that tracts with a higher share of households
earning between $35,000 and $75,000 had less sizeable service areas
and tracts with a higher proportion of younger adult residents had
greater service areas, ride-hailing services appear to remain most at-
tractive to city residents with less ownership-related obligations and
disposable incomes. These findings are in-line with other studies and
may be related to greater societal changes that are shaping mobility
preferences (Spurlock et al., 2019). City planners and leaders should be
responsive to such findings that underscore a reluctance over time for
households with modest incomes to adopt ride-hailing services for
longer trips by ensuing high-quality public transportation services are
provided to areas with lower-income residents and other vulnerable
populations who may be unable to regularly afford the more expensive
price of ride-hailing services or have limited access to a personal ve-
hicle.

Building on its contributions, future extensions of this work should
seek to address its limitations. First, while adoption of a random in-
tercept multilevel modeling framework enabled estimation of data
nested by time periods, a random slope model would permit an ex-
ploration of how different socioeconomic and built environment pre-
dictors of Uber service area expansion changed over time. Second, UM
travel time data are available for several other American cities and
could be incorporated in subsequent analyses. By adding more study
areas, a three-level model specification—where city is a level-two group
instead of a level-one control variable—may become feasible from an
empirical standpoint. Third, only morning peak period travel was ex-
amined in this study, but future research should also evaluate Uber
service area changes during other daily periods (e.g., evening) in which
ride-hailing services may have a higher demand. Fourth, it is important
to recognize that the dependent variable created for this study is likely
an imperfect operationalization of the service area concept, but an in-
ventive metric that utilizes one of the few sources of publicly-available
data on ride-hailing travel in an unintended manner. The aggregated
nature of UM data has limited its utility to transportation researchers to
date (Wu, 2019); however, its suppression of origin-destination pairs
with limited travel information permitted this study's exploration of
neighborhood factors behind Uber's ever-growing service area. Fifth, in
regard to the UM data source, tract-level data are unavailable for all
zones across the regions of this study's three cities. In response, tracts
within city boundaries were selected to reduce spatial attenuation, but
the number of tract destinations with unsuppressed travel time data
may be more than what is publicly shared by Uber. This data avail-
ability limitation was likely to have limited the Uber service ratio va-
lues for Washington, DC, where many tracts in Montgomery and Prince
George's County, Maryland were missing UM data. Finally, at present,
ride-hailing service in the United States is a duopoly between Uber and
Lyft. While Uber appears to dominate the current market share
(Shaheen et al., 2018), future research must continue to examine the
transportation and land use impacts of their combined services in our
urban areas.
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