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A B S T R A C T   

The introduction and proliferation of privately-operated dockless bikeshare systems across North America has 
caught many public planning agencies, who seek evidence to recognize the extent of dockless bikeshare adoption 
in their communities and its impact on existing transportation systems, by surprise. In this study, we investigate 
systemwide travel patterns during the first 18 months of a dockless bikeshare program in the Greater Boston 
region. Specifically, by identifying neighborhood-level predictors of dockless bike access and usage, this study 
offers insights into the spatial equity-related impacts of this promising active mobility option in Boston’s suburbs, 
which have limited access to the region’s decade-old public dock-based bikeshare system. Utilizing spatiotem-
poral route-level data provided by the sole dockless system operator to model bikeshare trip generation and 
duration, this study finds that neighborhoods with a higher share of renter-occupied housing and historically 
disadvantaged populations had less access to dockless bikes while also exhibiting higher rates of bike usage. We 
conclude that this undesirable finding may be addressed by implementing safeguard policies such as an equitable 
dockless bikeshare rebalancing scheme.   

1. Introduction 

Dock-based bikeshare systems in North America have experienced 
sustained growth in the ten years since becoming a public mobility 
service, with the addition of privately-operated dockless systems now 
offering an exciting opportunity to expand bikeshare services into new 
communities. Each system allows residents, workers, and visitors of the 
communities they serve with short-term, on-demand access to a travel 
option that does not require the same monetary costs and re-
sponsibilities of personal bike ownership (Xu et al., 2019). Moreover, 
dock-based as well as dockless bikeshare systems offer communities 
lacking good public transit service with a sustainable mobility option 
bearing notable environmental benefits related to traffic congestion and 
greenhouse gas emissions reduction. Taken together, bikeshare systems 
offer communities with a viable solution for addressing immediate 
concerns of transport poverty and disadvantage. 

Unfortunately, inequitable access to bikeshare stations—due to un-
fulfilled systemwide visions for station placement or a lack of supportive 
low level of traffic stress bike infrastructure—has been evident in some 

communities. As a result, some public dock-based systems (Smith et al., 
2015) provide limited benefits for underserved residents and commu-
nities while exacerbating existing social disparities related to trans-
portation access. While recent research and policy actions have sought 
to help alleviate the equity-related concerns of dock-based bikeshare 
access (Mooney et al., 2019), growing concerns surround emergent 
dockless systems where cities lack evidence needed to implement, 
maintain, and manage the spatial access afforded by redistributing bikes 
in these privately-operated systems (Hirsch et al., 2019) that may focus 
more on maximizing trip generation and profit rather than preserving a 
minimum standard of community access. 

This study aims to bolster the limited evidence base regarding spatial 
equity to dockless bikeshare services by examining how the introduction 
of a dockless bikeshare system to Greater Boston changed the region’s 
transportation landscape. Beyond summarizing the travel patterns of 
dockless bikeshare trips in the first year and a half of its operation in 
Boston’s inner-ring suburbs, the objective of this study is to examine the 
neighborhood-level predictors of dockless bike access and usage. An 
assessment of how socioeconomic characteristics relate to these separate 
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dockless bikeshare outcomes offers insight into the spatial and social 
equity-related impacts of this promising active mobility option. 

2. Literature reviewer 

2.1. Bikeshare and social equity 

In offering a new mobility option, bikeshare, whether dock-based or 
dockless, has the potential to benefit members of society who do not 
have the financial means to own and maintain a private vehicle as well 
as those who reside within a neighborhood unsupportive of sustainable 
travel options that would permit them improved access to employment 
opportunities and essential goods and services (Shaheen et al., 2014; 
Ricci, 2015; Murphy and Owen, 2019). Unfortunately, an inequitable 
distribution of docking stations or bikes may restrict the benefits of these 
services for individuals confronted by transport poverty or who reside in 
areas of transport disadvantage. 

While surveys on the socioeconomic composition of dockless bike-
share users have been scarce, evidence from dock-based bikeshare sur-
veys suggest that significant population segments, especially lower- 
income residents and people of color, remain underrepresented as sys-
tem users by producing fewer bikeshare trips (Shaheen et al., 2014; Buck 
et al., 2013; McNeil et al., 2018). In analyzing station locations to 
examine social inequity in early American dock-based systems including 
Boston’s Hubway (now Bluebikes), Ursaki and Aultman-Hall (2015) 
found that white residents were more likely to reside inside a 500-meter 
buffer of a docking station as were households earning less than $20,000 
per year. However, the authors also discovered that the mean percent-
age of African Americans per block group living inside bikeshare service 
areas was significantly lower than the percentage residing outside of the 
service area. Given the understood importance of access to docking 
stations toward bikeshare service utilization (Saviskas and Sohn, 2015), 
the disproportionate distribution of bikeshare stations in neighborhoods 
with more people of color reflects a clear barrier to their participation in 
bikeshare systems (Smith et al., 2015). Aside from station siting, other 
identified barriers to dock-based bikeshare system use by a more diverse 
population include fee structure, payment systems, and rental cost as 
well as any promotion, outreach, and marketing activities without a lens 
toward equitable considerations (Howland et al., 2017). 

Overall, the users of dock-based bikeshare systems in North Amer-
ican cities tend to be white, non-Hispanic individuals who are employed 
full- or part-time with higher levels of income and educational attain-
ment (Fishman, 2016; Hosford and Winters, 2018). An internal survey 
(n = 233) of dockless bikeshare users in the Boston suburbs conducted 
by Lime and the Metropolitan Area Planning Council in June 2019 
largely echoed the socioeconomic trends found in surveys of dock-based 
system users. In the Boston survey, over 70 percent of respondents re-
ported working full time, living in households earning more than 
$75,000 annually, and having an Associate, Bachelor’s, or advanced 
college degree. Taken together, the literature seems to support the 
notion that bikeshare has yet to capture high levels of participation from 
historically disadvantaged populations, despite their promise to help 
offer greater access to jobs, goods, and services for communities of 
concern (Qian and Niemeier, 2019). 

2.2. Bikeshare trip generation models 

Past studies have explored the relationship between socioeconomic 
and built environment factors measured at a neighborhood level and trip 
generation rates of dock-based bikeshare systems (e.g., Faghih-Imani 
et al., 2017b; Noland et al., 2016; Wang et al., 2016). General agreement 
in these dock-based bikeshare studies points to higher population and 
employment density along with an increased supply of docking stations 
and bike-friendly facilities as indicators that are positively associated 
with demand (Tu et al., 2019). However, those studies to-date that have 
examined the neighborhood-level predictors of dockless bikeshare 

demand—some of which are noted in detail below—have largely took 
place outside of the United States’ social and environmental context. 

Guidon et al. (2019), studying eight months of transaction data from 
an electric bikeshare service in Zurich, Switzerland by using a negative 
binomial model, found population and employment density as well as 
areas with good public transit access and higher-income residents were 
positively associated with demand. These findings may indicate that 
shared mobility services rely on a functioning public transit system, but 
that the high relative cost of dockless bikes to public transit may make 
the former a more attractive option to higher-income individuals. 
Examining one-month of dockless bikeshare data from Shanghai, China 
by using a generalized additive mixed model following a Poisson dis-
tribution, Tu et al. (2019) determined that neighborhoods with greater 
bus and rail station density had no significant impact on bike activity, 
while districts with increased roadway density and land use mixing had 
a significant and positive association. In assessing the environmental 
determinants of dockless bike trip generation over four months in 
Singapore, Xu et al. (2019) echoed the prior findings, noting that grid 
cells with higher residential and employment densities, greater land use 
mix, more robust road and bike network infrastructure, and better access 
to public transit stations generated more demand; with transit station 
proximity appearing to be a first-mile facilitator rather than a last-mile 
solution. Finally, Mooney et al. (2019) investigated the spatial equity of 
dockless bike access during a six-month pilot program—with Lime as 
one of three operators—in Seattle, Washington. Their study findings did 
not detect significant racial or ethnic disparities regarding dockless bike 
access but noted that neighborhoods with greater bike availability and 
shorter idle times between bike rentals tended to have households with 
higher median incomes and more college-educated residents. 

While limited in quantity and varied in context, these studies suggest 
that some dockless systems may have uneven bike distribution across 
their service areas (at least in larger urban areas) and that their usage is 
most frequent in neighborhoods of high density with mixed land uses 
and multimodal network access that are more economically privileged. 
This study seeks to strengthen this nascent knowledge base with a 
longer-term assessment of what socioeconomic and environmental fac-
tors are related to dockless bike availability and activity in an American 
suburban setting. 

2.3. Bikeshare trip duration models 

While studies of bike speed prediction have incorporated trip dura-
tion, the bikeshare literature is sparse on studies that have explicitly 
modeled the latter travel time outcome (Ghanem et al., 2017). Using 
data from New York City’s dock-based CitiBike system, Faghih-Imani 
et al. (2017a) compared bikeshare and taxi trip durations to identify 
origin, destination, and trip attributes predictive of more competitive 
bike trips. Results of their panel mixed multinomial logit model indi-
cated that improved bike facility access would decrease bikeshare trip 
duration and that modal competition is the greatest in areas of higher 
job density. In another study of CitiBike users, Ford et al. (2019) esti-
mated a least squares model of trip duration for commuters cycling to 
Manhattan’s Financial District, finding that distance, arrival time, and 
demographic predictors of age and gender were significantly associated 
with bike commute durations. Building on a multiple linear regression 
model of dock-based bikeshare trip duration in San Francisco, Ghanem 
et al. (2017) used machine learning techniques to similarly discover that 
trip distance and time-of-day were strong predictors of travel time. Their 
Bay Area study also noted the strong predictive power of subscription 
type, which may be indicative of a cyclist’s familiarity with a road 
network and ability to exert greater power, and several weather-related 
factors such as temperature, wind, and precipitation. Lastly, Zhao et al. 
(2015) explored the travel time differences by day-of-the-week and 
gender for a dock-based bikeshare system in Nanjing, China, finding that 
males generally experience shorter trip durations for comparable ori-
gin–destination pairings and that weekday trips that are less likely to be 

S.R. Gehrke et al.                                                                                                                                                                                                                               



Case Studies on Transport Policy xxx (xxxx) xxx

3

for recreational purposes have lower travel times. These studies 
demonstrate the significance of individual-level, area-wide, and trip- 
specific predictors of bikeshare trip duration; however, each of the 
reviewed studies examined older dock-based systems and lacked 
requisite GPS data for modeling route-level in addition to neighborhood- 
level determinants. 

3. Methods 

3.1. Study area 

Lime introduced its dockless bikeshare services to Massachusetts in 
September 2017 as a pilot program with the City of Malden. Over the 
next two years, 15 additional municipalities located in the inner core of 
the Greater Boston region would similarly form a partnership with Lime. 
Fig. 1 displays the distribution of these dockless bikeshare communities, 
which notably does not include Boston, Brookline, Cambridge, or 
Somerville. Due to conditions established in a contract between the 
Metropolitan Area Planning Council and Motivate, who operates the 
dock-based bikeshare system (Bluebikes) in the four municipalities, 
these communities are unable to participate in the regional dockless 
bikeshare program with Lime. In fact, the City of Everett is the only 
community with both dock-based Bluebikes and dockless Lime bike-
share service, as the community joined the Bluebikes system in Spring of 
2019 under the terms of an updated contract that permitted the simul-
taneous operation of both bikeshare systems. 

3.2. Dockless bikeshare data 

Dockless bikeshare data used in this study span in time from April 

2018, the conclusion of the Malden pilot and formal expansion into 
other participating municipalities, through September 2019. Trip-level 
data for all dockless bikeshare system communities were accessed 
using Lime’s Application Programming Interface (API), which followed 
the Mobility Data Specification (MDS) format originally created by the 
Los Angeles Department of Transportation. Data within the provider 
component of MDS offered both spatial (e.g., trip distance) and non- 
spatial (e.g., propulsion type) fields analyzed in this study. Trip dis-
tance was believed to be the actual on-road distance of the observed trip, 
as determined by Lime based on collected point locations. Also, of 
importance to the study design, information regarding the individual 
Lime cyclist was not provided in the MDS. In all, the unfiltered dockless 
bikeshare data set comprised upwards of 500,000 trips and 26.5 million 
GPS points for the 18-month period in which Lime was the sole dockless 
bikeshare operator in the study area. 

As is the case with many publicly operated dock-based systems, Lime 
provided spatiotemporal information on each trip end. However, unlike 
dock-based system data, having GPS points detailing the one-half- 
million dockless bike traces in this data set allowed for the research 
team to map and analyze the specific routes traveled by system cyclists. 
To do such, though, the research team undertook a series of steps to 
handle those GPS points of a lower accuracy rating that produced noise 
within the data set by placing points in the observed trace that were far 
from the actual traversed route. Additionally, in the Lime API data set 
provided for the first 15 months of the sampled timeframe, there were no 
more than 52 GPS points made available for any given trip; a limitation 
acknowledged and addressed by Lime for traces recorded in the last 
three months. A consequence of this artificial cap on GPS points was that 
segments of some trips were not fully recorded, or in certain instances, 
multiple successive GPS points recorded identical coordinates, followed 

Fig. 1. Municipalities with either dock-based or dockless bikeshare services in the Greater Boston region.  
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a short time later by a point placed far away. Another shortcoming of the 
provided data was that nearly one quarter (22.5%) of trips in the raw 
data contained no intermediate GPS points or recorded trip distance but 
merely distinct start and end locations. These “zero-distance” trips only 
offered information on dockless bikeshare trip production and attraction 
locations, while processes to clean traces with the aforementioned 
anomalies were pursued to retain as many observed routes as possible. 

3.3. Dockless bikeshare data processing 

Each trip in the API-retrieved Lime dockless bikeshare data set was 
provided as a set of raw GPS points—recorded at equal inter-
vals—without the accuracy needed to properly align them to the street 
network. Therefore, data processing steps were employed to improve the 
geolocation of GPS points along each trace of an observed route to better 
align these nodes to the street network. For this study, a method to clean 
Lime’s raw dockless bikeshare data was implemented based on trip 
durations, distances, origin and destination locations, travel speeds, and 
the count of recorded GPS nodes. 

First, raw data were filtered to remove records identified as outliers 
or which were missing requisite travel information, records with trip 
durations of less than one minute or greater than five hours, records with 
trip distances shorter than 100 m or longer than 20 km, and records with 
GPS points located outside of the Greater Boston region. There were 
multiple factors believed to have contributed to the generation of these 
outliers, including general bike disrepair, malfunctioning GPS unit, Lime 
user error or indecision (i.e., unlocked and quickly re-locked bike), and 
the cap placed on the quantity of GPS nodes collected. Yet, after 
applying these filters, a set of these qualified trips remained 

compromised by the existence of missing or errant data due to the 
artificial cap in collected nodes per trace and inaccuracy in GPS devices, 
respectively, which resulted in some unrecorded portions of a qualified 
trip. 

For cases in which multiple successive GPS points with identical 
coordinates were followed by a GPS point that was next in the sequence 
but located far away from the overlapping cluster, a high-speed suc-
cessive step was produced in the raw data set. The speed of these suc-
cessive steps was adjusted by removing the extra coincidental points and 
calculating the travel time interval for the larger step beginning with the 
timestamp of the first overlapping (and zero-speed) point and termi-
nating with the timestamp of the next unique GPS point in the trace’s 
sequence. An updated speed for this two-node segment was calculated 
by dividing the reported distance between the two unique points by the 
observed duration of this larger step. Any such non-continuous route in 
which the following set of conditions were unmet was filtered out of the 
sample data set: the newly calculated speed between the successive 
points elapsed 12 m/second (or 27 miles/hour), the straight-line dis-
tance calculated between the two successive and distinct points was 
greater than 200 m, and the distance of the adjusted link reflected less 
than one quarter of the trace’s overall distance. This process, which 
improved the quality of Lime’s raw route-level data set, produced 
424,169 route links associated with a total of 304,102 trips (1.39 links 
per trip). Only 40 percent of those trips had a single contiguous trace 
that connected the trip origin and destination, while meeting the three 
standards concerning small intranodal distances, short time gaps, and 
reasonable travel speeds. The sample was then reduced further to only 
account for trips generated in the boundaries of the 16 municipalities 
with official Lime adoption policies. 

Fig. 2. Boston-area municipalities with Lime dockless bikeshare and trip origin locations from April 2018 to September 2019.  
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The remaining route links were then entered into an open-source 
routing engine, GraphHopper, to assign each link to a specific facility 
found in the OpenStreeMap (OSM) network. Utilization of a network 
routing engine for this map matching exercise—rather than simply 
snapping the GPS points to the nearest network link—was a process 
necessary to avoid the creation of impossible or unreasonable bike 
routes. Yet, many observed trips crossed through plazas or parking lots, 
while other trips traversed sidewalks and pedestrian-only facilities or 
contraflow on a one-way street; each an action not permitted in the 
default GraphHopper cyclist profile. In response, this study generated a 
new cyclist profile that better mirrored the observed travel patterns of 
Lime cyclists by preventing circuitous routes that would result from 
routed trips being forced to approach each subsequent GPS point via a 
legally-sanctioned use of the street network and enabling routed trips to 
also use the OSM network elements tagged for pedestrian-only uses such 
as sidewalks on a one-way street. The map matching algorithm utilized a 
Hidden Markov Model to find the most likely route as determined by the 
sequenced timestamps of each successive GPS node (Newson and 
Krumm, 2009). More specifically, for each GPS node, a set of candidate 
points on the OSM network within a certain radius of each GPS point was 
computed, with the Viterbi algorithm then used to process the most 
likely sequence of matched points determined by considering the dis-
tances between each GPS node and its candidate points as well as the 
routing distance between consecutive map matching candidates. Each 
candidate point was determined by using the GraphHopper routing 
engine, as were updated routing distances. 

3.4. Dockless bikeshare trip generation 

By using the 271,058 trip origins in the cleaned Lime API data set, a 

next analytic step was to examine the count of dockless bikeshare trips 
generated across the Boston suburbs as a function of the socioeconomic 
context and built environment near each trip origin. Poisson regression 
models are the benchmark for analyzing discrete count data by 
restricting the variance and mean of the sampled data to be equivalent, 
conditional on a set of predictors (Cameron and Trividi, 1990), and have 
been estimated in earlier bikeshare trip generation studies (Corcoran 
et al., 2014; He et al., 2019). Several tests of overdispersion exist to 
assess whether this implicit assumption of variance and mean equiva-
lence has been met, with any violation of this restriction requiring the 
estimation of a negative binomial model that relaxes the Poisson 
assumption. This study employed the standard regression-based pro-
cedure for testing this property. 

An extension of a Poisson model is the zero-inflated Poisson (ZIP) 
model, which is a model for count data with excessive zeros and large 
counts (Lambert, 1992). The ZIP model specification addresses situa-
tions where more zeros are observed than would be predicted by a 
normal Poisson model, with an assumption that the disproportionate 
count of zeros can be explained by more than one reason. For this study, 
where dockless bikeshare trip generation counts were aggregated to a 
system of 250-meter grid cells casted over the Lime service area, a zero 
could reflect whether a bike was available for use within a given grid cell 
or the number of times any available bikes in the grid cell were chosen 
for travel. Thus, the conditional probabilities in this Poisson process can 
be modeled as (Greene, 2012): 

Prob(zi= 0|wi) = F(wi, γ)y will equal zero  

Prob(yi= j|xi, zi = 1) =
exp(− λi)λj

i

j!
y will be a count variable 

Fig. 3. Boston-area municipalities with Lime dockless bikeshare and trip routes from April 2018 to September 2019.  
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In the first Poisson-gamma probability, let zi denote a binary indi-
cator of bike availability in grid cell i with a set of wi characteristics. The 
second conditional probability offers j as a non-negative value and de-
notes each yi as being drawn from a Poisson population with parameter 
λi, which is the expected count of trips generated per grid cell and related 
to xi characteristics. 

The grid cell characteristics denoted in the two conditional proba-
bilities above were identical for this study and reflected socioeconomic 
context and built environment predictors. Socioeconomic characteristics 
for each grid cell were measured as tract-level indicators derived from 
the 2014–2018 American Community Survey (ACS) and defined distri-
butions of residents by sex, age, educational attainment, annual 
household income, and race/ethnicity and their households by tenure 
and vehicle ownership. A grid cell was given the socioeconomic context 
of the census tract that was nearest to its centroid. A similar association 
was made for built environment predictors that were measured at a 
block group geography and created using ACS data as well as the 2016 
Longitudinal Employer-Household Dynamics data set and transit infor-
mation provided by the Massachusetts Bay Transportation Authority. 
The contribution of each created predictor to a base trip generation 
model—with an intercept and categorical factor denoting time elapsed 
since Lime was authorized to begin operation in the municipality 
encompassing a grid cell—was iteratively tested using a stepwise pro-
cess. In constructing the final model, the variable with a p-value less 
than 0.05 in either the zero-inflated or count model that produced the 
greatest improvement to the model’s loglikelihood was successively 
added to the base specification, where any variable having a variance 
inflation factor greater than three being excluded from this forward 
selection process. 

3.5. Dockless bikeshare trip duration 

To complement the trip generation results, a second analysis exam-
ined the predictors of trip duration by using a subset of 98,738 trips in 
the cleaned Lime API data set with complete routes and that originated 
in the study area. Beyond investigating the neighborhood socioeco-
nomic context and built environment characteristics at each trip’s origin 
and destination that predict trip duration, this supplementary analysis 
also examined the impact of several trip- and route-specific de-
terminants using multiple linear regression. Trip characteristics per-
taining to weather were derived using National Centers for 
Environmental Information data from the National Oceanic and Atmo-
spheric Administration, while seasonal and daily travel period infor-
mation were created using trip-level timestamps in the Lime API data 
set. The route-specific trip distance measure—created from applying the 
GraphHopper routing engine—was also explored in the model specifi-
cation process, as was the percent of the observed route’s distance on 
low, moderate, and high level of traffic stress facilities (Gehrke et al., 
2020). 

4. Results 

4.1. General travel patterns and descriptive statistics 

Within the 16 Massachusetts municipalities that officially launched 
Lime dockless bikeshare services prior to October 2019, there were 
271,058 intra- or intermunicipal trips with a duration of at least one 
minute. Within this sample, human propulsion powered 163,661 
(60.38%) trips, with the remaining trips completed using an electric 
bike. The City of Malden, which was the first to pilot with Lime in 2017, 
had the most trips (77,949; 28.76%) within the 18-month study period, 
followed by Everett (36,630; 13.51%), Newton (29,122; 10.74%), 
Chelsea (22,078; 8.15%), and Arlington (21,452; 7.91%). The Towns of 
Milton and Bedford, which are located on the periphery of the study 
area, had the lowest participation rates of any municipality, with 64 
(<0.01%) and 972 (0.36%) trips, respectively. Fig. 2 offers a map of the 

study area with origin locations for all sampled trips, while Fig. 3 pro-
vides a map of the subset of these trips that had a continuously observed 
route. 

Examining temporal characteristics of the study sample, a majority 
of cycling trips took place during the summer months of June, July, and 
August (137,389; 53.41%); while, 28,444 (11.06%) trips were per-
formed during the colder winter months of December, January, and 
February. The day-of-the-week distribution of trips was fairly balanced, 
with Fridays (42,824; 15.80%) witnessing the highest trip volume and 

Table 1 
Descriptive statistics for 250-meter grid cells in Boston-area municipalities.  

Variable Mean St. 
Dev. 

Minimum Maximum 

Lime Dockless Bikeshare Trips  43.16  181.69 0 8120 
Human propulsion  46.81  155.32 0 5148 
Electric  30.72  87.39 0 2972  

Socioeconomic Context     
Sex: Share of male residents  0.48  0.04 0 0.82 
Sex: Share of female residents  0.52  0.04 0 0.70 
Age: Share of residents <18 years 

old  
0.20  0.06 0 0.46 

Age: Share of residents 18–34 years 
old  

0.23  0.11 0 0.79 

Age: Share of residents 35–44 years 
old  

0.13  0.03 0 0.30 

Age: Share of residents 45–64 years 
old  

0.27  0.05 0 0.55 

Age: Share of residents 65 years old 
or more  

0.16  0.05 0 0.33 

Education: Share of adults less than 
Bachelor’s  

0.30  0.15 0 0.88 

Education: Share of adults 
Bachelor’s  

0.19  0.05 0 0.36 

Education: Share of adults Master’s 
or PhD  

0.21  0.10 0 0.50 

Race/Ethnicity: White, non- 
Hispanic  

0.71  0.15 0 0.96 

Race/Ethnicity: Black/African 
American  

0.06  0.09 0 1.00 

Race/Ethnicity: Asian  0.12  0.08 0 0.57 
Race/Ethnicity: Latinx/Hispanic  0.05  0.07 0 0.73 
Race/Ethnicity: Other distinctions  0.05  0.05 0 0.62 
Income: Share of households less 

than $35,000  
0.19  0.11 0 1.00 

Income: Share of households 
$35,000-$75,000  

0.21  0.09 0 1.00 

Income: Share of households 
$75,000–150,000  

0.28  0.07 0 0.45 

Income: Share of households 
$150,000 or more  

0.32  0.16 0 0.68 

Tenure: Share of owner-occupied 
housing units  

0.65  0.20 0 1.00 

Tenure: Share of renter-occupied 
housing units  

0.34  0.19 0 1.00 

Vehicles: Share of households 0 cars  0.04  0.07 0 1.00 
Vehicles: Share of households 1 car  0.24  0.12 0 0.71 
Vehicles: Share of households 2 cars  0.47  0.12 0 0.78 
Vehicles: Share of households 3 cars 

or more  
0.25  0.12 0 1.00  

Built Environment     
Persons per acre  8.45  9.12 0 129.55 
Jobs per acre  3.89  6.31 0 60.48 
Share of retail jobs  0.15  0.19 0 1.00 
Retail jobs per acre  0.60  1.22 0 14.93 
Share of service jobs  0.59  0.27 0 1.00 
Service jobs per acre  2.22  4.22 0 46.82 
Share of financial jobs  0.06  0.09 0 0.99 
Financial jobs per acre  0.36  1.99 0 59.63 
Persons and jobs per acre  12.34  11.58 0 136.27 
Jobs-population ratio  2.56  66.45 0 3,706 
Balance of retail, service, and 

financial jobs  
0.26  0.25 0 0.91 

100-meter commuter rail walk shed  0.01  0.09 0 1.00 
100-meter rapid transit walk shed  0.01  0.12 0 1.00  
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Sundays having the lowest (35,199; 12.99%). Looking at seven daily 
time periods, Lime bike trips were most popular on weekdays between 
10am and 2 pm (73,587; 27.15%), followed by weekends from 2am to 7 
pm (61,653; 22.75%), weekday evening peak period (42,705; 15.75%), 
morning peak period (38,081; 14.05%), weekday mornings from 2am to 
6am (27,360; 10.09%), weekend evenings (14,053; 5.18%), and week-
day evenings (13,619; 5.02%). The average individual-level cycling trip 
in the sample lasted over 17 min, while the mean duration for trips on an 
electric bike was 14 min and 37 s. Grid-level summary statistics for trip 
duration and trip generation as well as measures describing the socio-
economic context and built environment, which were utilized in the two 
modeling analyses, are noted below in Table 1. 

Fig. 4 and Fig. 5 visualize the spatial distribution of 250-meter grid 
cells with dockless bikeshare activity thresholds above or below the 
approximate areawide mean coupled with the share of households in a 
grid cell with an annual income less than $35,000 and share of racial/ 
ethnic minority people, respectively. In examining Fig. 4, the munici-
palities of Malden, Everett, and Chelsea have a higher representation of 
grid cells with above-average dockless bikeshare activity (50 or more 
trips generated over the study period) and higher shares of low-income 
households. Revere and Quincy also have areas revealing this associa-
tion, but also have notable portions of their jurisdictions with high 
concentrations of low-income households and lower levels of dockless 
bikeshare trip generation. Turning to the connection between racial/ 
ethnic minority population distribution and dockless bikeshare activity 
shown in Fig. 5, grid cells in Malden and Chelsea appear to reveal an 
overall positive spatial association. However, several municipalities 
including Everett, Quincy, Revere, and Waltham have sets of grid cells 
with a minority-majority residential population yet a below-average 
count of originating dockless bikeshare trips. 

4.2. Predictors of dockless bikeshare trip generation 

The results of the zero-inflated Poisson (ZIP) model of dockless 
bikeshare trip generation counts are shown in Table 2. A decision to 
estimate a ZIP model with White-Huber standard errors was reached 
after a base Poisson model with a similar specification—only including a 
three-level categorical predictor pertaining to months passed since a 
formal policy was adopted to allow Lime to function in a particular 
municipality—was found to not fit the data set (χ2 = 6,462.43,df = 6,
277) and underpredicted its number of observed zeroes. A zero-inflated 
negative binomial model specification was not pursued given that the 
ZIP model produced a theta value of 0.15. Theoretically, the estimation 
of a zero-inflated model was supported by the likelihood that a set of 
250-meter grid cells were likely to have never had a Lime bike found 
within their boundaries during the study’s timeframe; thus, no dockless 
bikeshare trip could ever be generated in these geographic units. 

Reference to the zero-inflation model where grid cells without a 
generated bikeshare trip are zero based on the unavailability of a 
dockless bike offers insight into the distribution of these micromobility 
options in Boston’s suburbs. Grid cells in municipalities where Lime was 
approved to operate its dockless bikeshare service for seven months to 
one year experienced a wider distribution of bikes than those grid cells 
in municipalities with a more recent operations agreement with Lime 
(β = − 0.31, p < 0.01); underscoring the notion of elapsed time as a 
requisite for greater network coverage during the first year. Concerning 
the built environment context, grid cells with a higher population (β =

− 0.21,p < 0.01) and job density (β = − 0.07,p < 0.01) were less likely 
to have bicycle unavailability, an expected outcome. If a grid cell 
intersected a 100-meter walkshed surrounding a commuter rail station, 
then the expectation of the cell to not have an available dockless bike 

Fig. 4. Lime dockless bikeshare activity from April 2018 to September 2019 and low-income households.  
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decreased by a factor of 0.04 (β = − 3.16, eβ = 0.04, p < 0.01) while 
holding all other model predictors constant. This finding supports efforts 
by Lime and local governments to distribute dockless bikes near these 
suburban stations to provide rail passengers a last-mile option and the 
likelihood that some dockless bikes are available in these locations 
because previous cyclists may have used Lime bikes as a first-mile 
option. 

Turning to the socioeconomic predictors in the zero-inflation model, 
grid cells with a higher share of zero-car households (β = − 5.30,
p < 0.01) were also less likely to not have an available bike for pro-
spective cyclists, while the opposite condition existed in cells with a 
higher share of households with three or more vehicles (β = 5.86,
p < 0.01). A more surprising outcome was that in grid cells located in 
census tracts with a higher share of renter-occupied housing, the odds of 
that grid cell having no dockless bikes available to a prospective cyclist 
increased by a factor of 1.70 (β = 0.53, eβ = 1.70,p < 0.05). This model 
finding points to a deficiency in the placement (whether behavioral or 
not) of Lime dockless bikes that capitalizes on their ability to serve as a 
non-auto mobility option for residents who may have lower economic 
means to pursue home or car ownership. Comparably, those grid cells 
within census tracts with a higher share of the residential populace 
identifying as African American (β = 6.04, p < 0.01) were also more 
likely to not have a dockless bike available for prospective cyclists. 
While these latter two findings are not indicative of any individual but 
instead the general socioeconomic composition of neighborhood resi-
dents in areas with dockless services, the results do emphasize how this 
new mobility service in the Boston-area municipalities may not have 
been equitably or most effectively distributed during the initial stages of 
system expansion. 

For grid cells with generated dockless bikeshare trips, the trip count 
during the first 18 months of service was expected to increase in grid 
cells where a formal policy was adopted over one year ago (β = 1.06,
p < 0.01) when compared to the referent category of six months or less 
of sanctioned Lime bikeshare service. Other count model results that 
paralleled findings from the zero-inflated model were also identified. 
Grid cells characterized by a heightened population (β = 0.02,p < 0.01) 
or employment (β = 0.03, p < 0.01) density as well those 250-meter 
cells intersecting the 100-meter walksheds around commuter rail sta-
tions (β = 1.02,p < 0.01) were associated with higher counts of dockless 
bikeshare trip generation. Similarly, if a grid cell intersected the 100- 
meter walkshed of a rapid transit station, the expected count of dock-
less bike trips increased over twofold (β = 0.73, eβ = 2.08, p < 0.01), 
given the final ZIP model specification. 

Grid cells within the study area with a greater share of renter- 
occupied housing units (β = 2.19, p < 0.01) and residents who iden-
tify as African American (β = 3.11,p < 0.01) were also predicted to have 
higher rates of dockless bikeshare trip generation. Taken together with 
the zero-inflated model finding that these areas are less likely to have 
dockless bikes available to its residents, proactive efforts should be made 
to distribute bikes more widely as model results show that doing so 
would increase dockless cycling activity across the official Lime service 
area. Geographic subunits with higher share of households with zero 
(β = − 1.51,p < 0.01) or at least three cars (β = − 2.15,p < 0.01) were 
associated with lower levels of cycling activity. The former outcome was 
an unexpected model result that may be in part due to the greater 
probability of dockless bike unavailability within cells of tracts with 
higher shares of zero-car households. 

Fig. 5. Lime dockless bikeshare activity from April 2018 to September 2019 and racial minority population.  
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4.3. Predictors of dockless bikeshare trip duration 

Table 3 displays the linear regression model results from the subse-
quent analysis of predictors of dockless bikeshare trip duration. 
Regarding the socioeconomic context at the trip origin, an increase in 
the share of residents between 35 and 44 years of age (β = − 4.49,
p < 0.01) was associated with a decrease in trip duration, while a higher 
share of residents within a neighborhood who do not identify as White, 
African American, Asian, or Latinx (β = 3.48,p < 0.01) was associated 
with an increased average travel time. At the trip destination, grids cells 
with an increase in the share of residents between 35 and 44 years of age 
(β = − 12.71, p < 0.01) or share of households with at least three ve-
hicles (β = − 3.57,p < 0.01) were more likely to experience shorter trip 
durations. In contrast, dockless bikeshare trips ending in grid cells with a 
higher share of female residents (β = 6.13,p < 0.01) or adults without a 
four-year college degree (β = 5.79, p < 0.01) were associated with 
longer dockless bikeshare trip durations. In terms of the built environ-
ment surrounding either trip end, trips concluding in a neighborhood 
with a higher employment density (β = − 0.02, p < 0.01) were more 
likely to be shorter, as were dockless bikeshare trips beginning (β =

− 1.56,p < 0.01) or ending (β = − 2.64,p < 0.01) within the walkshed 
of a rapid rail station. 

Turning to modeled route-specific predictors, unsurprisingly, an in-
crease in trip distance (β = 9.30,p < 0.01) was related to an increase in 
trip duration. Of greater interest to active transportation planners, an 
increase in percent of network links along a route classified by a low 
level of traffic stress (β = 4.52,p < 0.01) resulted in an increased travel 

duration. While cyclists who ride along a higher share of bike-friendly 
facilities may take less direct routes, the association of cycling along 
these facilities with longer travel times also highlights an increased 
willingness of risk-adverse cyclists to ride longer durations if routes 
along safer bike facilities are available. As for trip-specific predictors, 
dockless bikeshare users who rented an electric bike (β = − 3.44,
p < 0.01) were more likely to experience a shorter travel time, with trips 
that occurred on days with any measurable rainfall (β = − 0.44,
p < 0.01) or average sustained winds above 15 miles per hour (β =

− 0.52, p = 0.01) also being associated with shorter trip durations. 
Seasonality and daily travel period were also found to significantly 
predict dockless bikeshare trip duration. Trips during the first 18 months 
of dockless bikeshare in Boston’s suburbs that took place in the fall (β =

− 1.36,p < 0.01) or winter (β = − 1.63,p < 0.01) were, on average, of a 
shorter duration than trips that occurred during the summer months; 
whereas, all trips that occurred in a period outside the referent case of 
weekends from 2am to 7 pm were more likely to have a shorter trip 
duration. 

5. Conclusion 

The recent arrival and rise in popularity of dockless bikeshare ser-
vices in North American cities—with over 200 systems in more than 150 
cities providing thousands of bikes for public use (Hirsch et al., 2019)— 
has surprised many governments who are testing new regulatory models 
to oversee these for-profit mobility operators. While unique in its unified 
attempt to help assuage any future tensions between municipalities and 
this private industry via a regional initiative to select specific vendors 
and standardize service delivery (Hauf and Douma, 2019), the Greater 

Table 2 
Trip generation model results of dockless bikeshare utilization in Boston-area 
municipalities.  

Variable Coef. Std. 
Err. 

Sig. 

Count model (Poisson with log link)    
Intercept 2.00 0.26 <0.01 
Months since Lime policy adoption: 0–6 – – – 
Months since Lime policy adoption: 7–12 0.14 0.22 >0.10 
Months since Lime policy adoption: 13 and 

above 
1.06 0.20 <0.01  

Socioeconomic Context    
Race/Ethnicity: African American 3.11 0.66 <0.01 
Tenure: Renter-occupied 2.19 0.24 <0.01 
Vehicles: 0 − 1.51 0.57 <0.01 
Vehicles: 3 − 2.15 0.62 <0.01  

Built Environment    
Persons per acre 0.02 0.01 <0.01 
Jobs per acre 0.03 0.01 <0.01 
Walkshed: Commuter rail 1.02 0.35 <0.01 
Walkshed: Rapid transit 0.73 0.22 <0.01 
Zero-inflation model (binomial with logit 

link)    
Intercept − 0.33 0.19 <0.10 
Months since Lime policy adoption: 0–6 – – – 
Months since Lime policy adoption: 7–12 − 0.31 0.11 <0.01 
Months since Lime policy adoption: 13 and 

above 
0.02 0.09 >0.10  

Socioeconomic Context    
Race/Ethnicity: African American 6.04 0.53 <0.01 
Tenure: Renter-occupied 0.53 0.24 <0.05 
Vehicles: 0 − 5.30 0.68 <0.01 
Vehicles: 3 5.86 0.45 <0.01  

Built Environment    
Persons per acre − 0.21 0.01 <0.01 
Jobs per acre − 0.07 0.01 <0.01 
Walkshed: Commuter rail − 3.16 1.00 <0.01 
Walkshed: Rapid transit − 0.44 0.37 >0.10  

Summary Statistics    
Number of observations 6,280   
− 2 log likelihood − 216,854.10    

Table 3 
Trip duration model results of dockless bikeshare trips generated in Boston-area 
municipalities.  

Variable Coef. Std. 
Err. 

Sig. 

Intercept 4.40 0.95 <0.01  

Trip Characteristics    
Season: Spring 0.35 0.16 0.02 
Season: Summer – – – 
Season: Fall − 1.36 0.11 <0.01 
Season: Winter − 1.63 0.25 <0.01 
Period: Weekday, early morning − 4.20 0.18 <0.01 
Period: Weekday, morning peak − 2.10 0.16 <0.01 
Period: Weekday, day − 1.51 0.13 <0.01 
Period: Weekday, evening peak − 1.19 0.15 <0.01 
Period: Weekday, evening − 3.88 0.27 <0.01 
Period: Weekend, day – – – 
Period: Weekend, evening − 2.65 0.25 <0.01 
Daily rain event − 0.44 0.10 <0.01 
Daily high average winds − 0.52 0.20 0.01 
Electric bike − 3.44 0.11 <0.01 
Route Characteristics    
Distance (miles) 9.30 0.95 <0.01 
Percent cycled on low Level of Traffic Stress links 4.52 0.15 <0.01  

Socioeconomic Context    
Destination: Sex: Share of female residents 6.13 1.56 <0.01 
Origin: Age: Share of residents 35–44 years old − 4.49 1.91 <0.01 
Destination: Age: Share of residents 35–44 years old − 12.71 2.00 <0.01 
Destination: Share of adults less than Bachelor’s 5.79 0.39 <0.01 
Origin: Race/Ethnicity: Other distinctions 3.48 0.53 <0.01 
Destination: Vehicles: Share of households 3 cars or 

more 
− 3.57 0.58 <0.01  

Built Environment    
Destination: Jobs per acre − 0.02 0.01 <0.01 
Origin: Walkshed: Rapid transit − 1.56 0.19 <0.01 
Destination: Walkshed: Rapid transit − 2.64 0.22 <0.01 
Summary Statistics    
Number of observations 74,914   
Adjusted R2 0.29    
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Boston region’s experience with dockless bikeshare systems remains one 
faced by social and spatial equity concerns. This study finding demon-
strates that there was insufficient access to dockless bikes in the Boston- 
area municipalities for neighborhoods with a higher share of renter- 
occupied housing and African American residents, despite the 
increased likelihood of neighborhoods within this socioeconomic 
context to be associated with greater dockless bike trip generation. 
During the 18-month period, Lime redistributed its dockless bikes on a 
semi-regular basis centered largely on placement in high demand areas; 
an operator-led redistribution model that may emphasize goals of 
maximizing trip generation and profit (de Chardon et al, 2016). While 
access to a regional dockless bikeshare system remains in its preliminary 
phase in Boston, participating municipalities should look to alternative 
models in cities such as Seattle who have established requirements to 
ensure that a minimum share of their fleet is available within identified 
communities of concern during rebalancing (Hirsch et al., 2019). 

More encouraging results of this study found a positive link between 
the built environment predictors of population and employment density 
as well as access to commuter rail stations and increased dockless bike 
access and usage. Coupled with the positive association between rapid 
transit station access and bikeshare trip generation, the introduction of 
an expanding dockless bike system in Boston’s inner-suburbs appears to 
be offering a viable active transportation alternative in areas of high 
demand and further complementing existing non-auto travel options. If 
corroborated by future individual trip analyses, this finding would be a 
positive outcome as jurisdictions and privately-owned dockless bike 
operators seek to create synergistic partnerships around public transit 
and dockless bikeshare services (Moscholidou and Pangbourne, 2019). 
In a second promising study finding, neighborhoods with a higher share 
of zero-car households were positively associated with dockless bike-
share access and trip generation, which points to a prospect for this 
mobility option to deliver residents—who voluntarily or due to eco-
nomic circumstance, forego car ownership— a more affordable and 
healthier travel mode. 

In analyzing the first year and a half of dockless bikeshare data in 
Boston’s suburbs, our study offers initial insights into the patterns and 
trends of its adoption. More specifically, this study estimated a ZIP 
model to identify the environmental and neighborhood-level socioeco-
nomic indicators of dockless bikeshare system availability and utiliza-
tion, with a social and spatial equity focus. Beyond our study’s 
contributions, future efforts should look to expand its efforts to help 
deepen its impact. The predictive power of the dockless bike trip gen-
eration model would be enhanced by using built environment measures 
of network connectivity and land development pattern (e.g., Gehrke and 
Welch, 2019) that have been found to be significant in existing dock- 
based bikeshare analyses. Regarding the trip duration analysis, richer 
insights could be offered by including individual-level attributes, whose 
exclusion remain a limitation of the provided API data set, rather than a 
reliance on neighborhood-level socioeconomic context predictors as 
proxies for the important cycling-related attributes of sex, age, educa-
tion, race/ethnicity, and income. Third, future analyses of the cleaned 
Lime API data set should seek to further leverage the GPS traces to 
identify a more robust set of route-level predictors of dockless bikeshare 
demand and route choice. To close, while outside our study scope, future 
research is needed to help identify and address any social equity policy 
shortcomings related to the provision of dockless bikes to individuals 
most susceptible to the negative consequences of transport poverty. 
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