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REVIEW ARTICLE

Spatial interactions of shared e-scooter trip generation
and vulnerable road user crash frequency

Steven R. Gehrkea , Brendan J. Russob, Bita Sadeghinasrc,
Katherine R. Riffleb, Edward J. Smaglikb, and Timothy G. Reardond

aGeography, Planning, and Recreation, Northern Arizona University, Flagstaff, Arizona, USA; bCivil
Engineering, Construction Management, and Environmental Engineering, Northern Arizona
University, Flagstaff, Arizona, USA; cCivil and Environmental Engineering, Northeastern University,
Boston, Massachusetts, USA; dMetropolitan Area Planning Council, Boston, Massachusetts, USA

ABSTRACT
In recent years, a rush of privately-owned shared micromobil-
ity services has descended on many American cities. The
increased availability in these emergent mobility options,
which include dockless bikeshare and electric scooter systems,
offers urban residents, workers, and visitors a convenient
travel alternative to more established modes. However, with
limited regulation and dedicated infrastructure, the rapid
introduction of new micromobility services has come with ris-
ing safety concerns. This study provides new evidence on the
spatial associations between e-scooter trip generation and vul-
nerable road user crash counts by investigating eight months
of shared mobility data collected during a 2019 pilot program
in Brookline, Massachusetts. The findings from traditional and
spatial negative binomial models with a set of network and
environmental predictors are presented and demonstrate a
connection between shared e-scooter and long-term vulner-
able user crash activity. Our results illustrate the need for poli-
cies that promote shared mobility services through safer
infrastructure provisions.

KEYWORDS
Micromobility; shared
mobility; electric scooters;
vulnerable road users;
trip generation

1. Introduction

In recent years, privately-owned micromobility service providers have
introduced new dockless bikeshare and electric scooter (e-scooter) systems
that continue to gain popularity around the world. Particularly, the pres-
ence of e-scooters has increased substantially since these new micromobility
services were introduced in the United States (US) in September 2017. In
fact, the adoption of shared e-scooters now exceeds that of existing bike-
share systems in some US cities (Caspi, Smart, & Noland, 2020). While the
adoption of e-scooters as a new travel option carries a potential to improve
urban mobility by providing a convenient and potentially more
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environmentally friendly way to complete short trips, much is still
unknown about how the roadway system and built environment impact e-
scooter usage or the potential safety risks to and behaviors and patterns of
e-scooter riders. Shared e-scooter services are continuing to be introduced
in cities without clear evidence about these mobility and safety impacts or
what policy measures could be made to extend their benefit or reduce their
risk. Accordingly, there is a strong need for investigations into how these
interconnected issues relate in order to inform transportation policies that
safely and effectively support their continued adoption.
In April 2019, the Town of Brookline, Massachusetts became the first

municipality in the Greater Boston region to partner with private shared e-
scooter service providers in an eight-month pilot program to assess the
actualization of the potential wide-ranging benefits of e-scooter services to
their community. To better understand the spatial patterns and predictors
of e-scooter trip generation, as well as potential safety implications, this
study utilizes a data set of over 17,000 e-scooter trips in Brookline which
were obtained by the Metropolitan Area Planning Council through a part-
nership with Lime, one of the shared mobility providers operating during
the pilot program. Given the lack of police-reported e-scooter crash
records, the e-scooter trip data set was supplemented with five years of vul-
nerable road user (pedestrian, bicycle, skateboard, and moped) crash data
for the Town of Brookline. These crash data serve as a surrogate measure
to assess where e-scooter crashes might be likely to occur.
Provided this context, the objectives of this study were twofold. First, the

relationship between e-scooter trip generation patterns and long-term vul-
nerable road user crash frequencies was explored. Second, the zonal net-
work and environmental factors associated with clustered e-scooter trip
counts and vulnerable road user crash frequencies were investigated. To
achieve these stated objectives, a series of spatial negative binomial models
were estimated for both e-scooter trip generation and vulnerable road user
crash frequency, with each model outcome tested as a predictor of the
other. Study findings are intended to provide important new insights for
transportation and municipality officials, researchers, and e-scooter service
companies who may be working together on planning future deployments
in other American cities.

2. Literature review

Shared e-scooters are a relatively new mobility option and, consequently,
research into the various safety implications or rider travel behaviors and
patterns of this emergent micromobility service remains relatively limited
compared to other established modes. Existing shared e-scooter studies
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generally investigate safety by accessing medical/hospital records, rider
behaviors with field observations or gathered GPS data, and travel patterns
as they relate to roadway facilities and the built environment. Each of these
important aspects require further assessment as e-scooter ridership is likely
to continue increasing as the availability of and familiarity with these
shared mobility services improves.
With respect to e-scooter safety research, Badeau et al. (2019) reviewed

medical records from 2017 and 2018, before and after the launch of a new
shared e-scooter program in Salt Lake City, Utah. The study showed the
number of patients with major head and musculoskeletal injuries related to
e-scooter adoption increased after the launch of the city’s program, with a
zero percent helmet use rate among injured riders. A similarly-conducted
study by Puzio et al. (2020)—analyzing trauma center records from 2017
and 2018 in Indianapolis, Indiana, before and after the legalization of
shared e-scooters—reported an increase of e-scooter-related injuries from
zero cases to 92 cases and a zero percent helmet use rate among injured
riders. In another safety study, the City of Austin (2019) reviewed records
and interviews with injured e-scooter riders who were identified by emer-
gency medical services incident reports. Of the 190 injured e-scooter riders
identified, nearly one half (48%) were aged 18–29 years, with 48% also
experiencing head injuries, and only one of the sampled e-scooter riders
having worn a helmet. Finally, Trivedi et al. (2019) analyzed medical
records for injured e-scooter riders in southern California, finding that
40% of riders experienced a head injury and 58% were male. Their study
also included a one-day field observation of e-scooter riders, which found
that only six percent of all riders wore a helmet.
As for studies characterizing e-scooter rider behaviors, an observational

study by Bai, Liu, Guo, and Yu (2015) that collected data at 13 signalized
intersections in China found e-scooter riders to have participated in three
risky behaviors (stopping beyond the stop line, riding in motorized travel
lanes, and riding against traffic), with e-scooter riders generally more likely
to engage in risky behaviors when compared with cyclists. Other studies
have similarly reported a higher prevalence of self-reported risky behaviors
among e-scooter riders (Berge, 2019; Rodon & Ragot-Court, 2019). An
observational study of e-scooter rider behavior in Los Angeles, California
by Todd, Krauss, Zimmermann, and Dunning (2019) found that 22% of
riders rode on the sidewalk, 7% rode against traffic flow, and only 11%
wore helmets. In terms of e-scooter travel patterns, most analyses have
been conducted by utilizing data obtained from private e-scooter compa-
nies. Mathew, Liu, Seeder, Li, and Bullock (2019) analyzed GPS data from
two shared e-scooter service providers over three months (425,000 e-
scooter trips) and found the average trip duration, length, and speed were

JOURNAL OF TRANSPORTATION SAFETY & SECURITY 3



13.86minutes, 1.12 miles, and 5.46 miles per hour, respectively. The study
also noted that e-scooter adoption was greatest from 4:00 to 9:00 pm, and
that only 15% of e-scooters were used for more than one hour per day.
An identification of how land use and the built environment relate to e-

scooter ridership is critical for understanding the spatial conditions that
support shared e-scooter adoption and informing plans for their continued
and future deployment. Bai and Jiao (2020) used a GIS hotspot spatial ana-
lysis to investigate e-scooter ridership in Austin, Texas and Minneapolis,
Minnesota. A negative binomial model was estimated to examine the asso-
ciation between e-scooter usage and the built environment; finding that
proximity to the city center, better access to public transit, land use mixing,
and areas with pedestrian-oriented infrastructure were linked to increased
e-scooter activity. A study by McKenzie (2019), which analyzed e-scooter
trips in the Washington DC region, found that 40.6% of trips started in
recreational/public areas, 36.3% of trips started in commercial areas, 23.1%
of trips started in residential areas, and 60% of all trips started and ended
in areas of the same land use. Zou, Younes, Erdo�gan, and Wu (2020) also
used e-scooter data from Washington, DC to generate locational time-series
data and trip trajectories for analyzing travel patterns at a street-link
level. Their study found that arterials and local streets were most popular
for e-scooter activity, while streets with bike lanes were more likely to
attract e-scooter riders. Likewise, Caspi et al. (2020) analyzed six months of
e-scooter trip data from Austin, Texas, finding e-scooter usage was highest
in areas with better bike infrastructure.
Most germane to our study, Byrnes, Hall, McMahon, Pontius, and Watts

(2019) analyzed e-scooter trip data from Columbus, Ohio along with
crashes involving vulnerable road users (pedestrians, bicycles, and mopeds)
at a 0.25-mile grid cell geography to investigate any potential correlations.
The authors concluded the existence of a correlation between e-scooter trip
and vulnerable road user crash frequencies; however, a detailed statistical
description of this correlation was not provided, and further research is
warranted to explore this posited relationship.
Overall, the safety of e-scooter riders is found to be an important con-

cern, with most existing studies utilizing hospital records to examine safety
impacts given the lack of police-reported crash data sets that are often used
to analyze motor vehicle traffic safety. Additionally, while there is some evi-
dence assessing the relationships between the built environment and land
use conditions with e-scooter trip characteristics, further research is
required to externally validate whether these findings are applicable beyond
the handful of studied cities. In response, this study seeks to advance the
nascent but growing evidence base regarding e-scooters by examining factors
significantly associated with e-scooter trip generation as well as vulnerable
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road user crash frequency (given the lack of police-reported e-scooter crash
data). Spatially autoregressive negative binomial models were estimated to
study the effects of roadway and environmental characteristics on each trans-
portation outcome and establish the quantitative relationship between e-
scooter trip generation and vulnerable road user crash frequencies.

3. Methods

3.1. Study context

Brookline, Massachusetts is in Norfolk County, bordering Boston to its
north, south, and east, and Newton to its west. As of 2018, the town had a
population of 59,234 residents from 24,541 households, who earned a
median household income of $113,515. The Massachusetts Bay Transit
Authority (MBTA) has 17 light rail (trolley) stations in the town’s borders,
aiding in the characterization of Brookline as an affluent, former streetcar
suburb. The northern section of the town above Boylston Street is well-
connected to both Boston University and Harvard Medical School’s
Longwood Campus, while the southern portion is predominately residential
in nature with open space land uses.
On April 1, 2019, Brookline launched an eight-month pilot program for

shared electric scooters with three micromobility service providers (Lime,
Bird, and Spin), in an effort to understand the potential contribution of
this emergent shared mobility option to its mobility, safety, equity, and cli-
mate action goals. Initially, each company was permitted to deploy 100
dockless e-scooters throughout the town, with Lime and Bird authorized
during June 2019 to increase their fleets to 150 and 125, respectively, after
averaging at least three daily rides. Under pilot program participation
guidelines, riders were required to wear a helmet, prohibited to ride on
sidewalks, and allowed to operate an e-scooter between 6:00am and
9:00pm. The e-scooters are rented to riders at an initial charge plus usage
fee, powered exclusively by an electric motor, and capped at a maximum
speed of 15 miles per hour. Trip data were collected by the shared mobility
service companies, with crash information reported to the Brookline Police
Department or directly to the companies.

3.2. Data sources

E-scooter trip data were collected by Metropolitan Area Planning Council
staff through a partnership with Lime, via the company’s Application
Programming Interface (API) and in accordance to the Mobility Data
Specification (MDS) format created by the Los Angeles Department of
Transportation. E-scooter trips from April 1 to November 15, 2019 were

JOURNAL OF TRANSPORTATION SAFETY & SECURITY 5



analyzed, with each record providing a trip and vehicle identification num-
ber as well as timestamps and geographic coordinates for the start and end
location of each observation. During the pilot program’s timeframe, 22,474
Lime e-scooter trips that originated in Brookline with complete spatial
route information were recorded; a data set which was reduced to a study
sample of 17,513 trips that started and ended within Brookline’s municipal
boundary (Figure 1).
Given the limited timeframe of the pilot program, multiyear e-scooter

crash data were not available for this study. Thus, to offer insight into the
observed safety risks likely encountered by e-scooter riders, crash data on
vulnerable road users (pedestrians, bicyclists, skateboarders, and moped
riders) from 2015 to 2019 in Brookline were collected and analyzed. These
crash data were published on the Massachusetts Department of
Transportation’s Crash Data Portal, with the severity of each recorded
crash following the KABCO injury classification scale. In total, 336 crashes
involving vulnerable road users were reported during the five-year period,
with zero fatalities (K), 222 crashes resulting in a non-fatal injury that was
either incapacitating (A), non-incapacitating (B), or possible (C), and 144
crashes resulting in no injuries (O) or an unknown maximum injury out-
come (U). These crash data and Lime e-scooter trip data were then aggre-
gated to a 300-meter grid cell system casted over the study area.
In complement to these transportation outcomes, a set of network char-

acteristics and environmental factors were also computed for each grid cell.

Figure 1. Lime e-scooter trips during the Town of Brookline’s 2019 pilot program.
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Using OpenStreetMap (OSM) network data, the percent of roads in each
grid cell categorized by the OSM highway tag of motorway, primary, sec-
ondary, tertiary, and residential were calculated. Expanding beyond the
road network to also include multiuse paths and other non-motorized
infrastructure, the percent of low (level 1), moderate (level 2 or 3), and
high (level 4) level of traffic stress (LTS) links to all available on- and off-
road facilities was calculated for each spatial unit (Furth, Putta, & Moser,
2018). In addition, three zonal measures of overall network connectivity
were created using street nodes and links in the OSM data set: connected
node ratio, beta index, and intersection density (Gehrke & Welch, 2019).
Connected node ratio is measured as the number of three- and four-legged
intersections divided by sum of intersections and cul-de-sacs in a grid cell,
beta index is measured as a ratio of street links to intersections in a grid
cell, and intersection density is the number of intersections per square mile
in a grid cell.
A set of more common built environment and land use measures such

as population, employment, and activity (the sum of persons and jobs)
density as well as a ratio of jobs-to-households was also produced for each
grid cell using 2010 United States Census Bureau and 2017 Longitudinal
Employer-Household Dynamics data and an area-based apportionment
process. The percent of commercial, residential, mixed, and open space
land use per zone was calculated using 2016 land cover data from the
Massachusetts Bureau of Geographic Information, while measures of bus
stop density and percent of area within a one-half-mile buffer of a rapid
transit station were calculated using 2019 General Transit Feed
Specification (GTFS) data.

3.3. Analytic approach

Utilizing these grid-level data on the count of Lime e-scooter trips recorded
during Brookline’s pilot program and count of vulnerable road user crashes
occurring in the town from 2015 to 2019 as well as zonal network charac-
teristics and environmental factors, a set of negative binomial (NB) models
were estimated. The use of an NB model specification was selected to assess
the network and environmental determinants of e-scooter trip generation
and vulnerable road user crash frequency, provided the non-negative inte-
ger and likely over-dispersion nature of the two dependent variables.
Relaxation of the equidispersion assumption in a Poisson count model that
indicates equality in the conditional mean and variance functions is a
major advantage of the NB model, which defaults to the former model
structure if overdispersion is not present. The structure for the first pair of
aspatial NB models is presented as such:
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ki ¼ exp bxi þ eið Þ (1)

Where, xi is a set of network characteristics and environmental attributes
of grid cell i and ei is a Gamma-distributed error term with a mean of one
and a variance of a2: Addition of this error term permits the variance to
differ from the conditional mean:

var yi½ � ¼ E yi½ � þ aE yi½ �2 (2)

When analyzing trip generation and crash frequency data that are aggre-
gated to a geographic unit of analysis, unobserved spatial correlations may
be present. A commonly accepted approach to assess whether spatial auto-
correlation exists is by estimating the global Moran’s I statistic (Anselin,
1995):

I ¼
P

i

P
jwijzi � zj=S0
P

i z
2
i =n

(3)

Where, wij represents the elements of a spatial weights matrix, S0 ¼P
i

P
jwij is the sum of all the weights, and n is the number of grid cells

(observations). This formulation shows Moran’s I to be a cross-product
statistic between a variable and its spatial lag, with the variable expressed in
terms of deviations from the mean.
In testing a null hypothesis that spatial randomness exists, positive spatial

autocorrelation was found to exist in the two dependent variables: count of
e-scooter trips originated (I ¼ 0:339, p < 0:01) and count of vulnerable
road user crashes (I ¼ 0:270, p < 0:001). A significant finding that indi-
cated this unobserved correlation should be accounted for with a spatially-
explicit extension of the above NB models.
An estimation of the spatial lag of X (SLX) model (Vega & Elhorst,

2015) enables spatial spillover effects related to the count of e-scooter trips
and vulnerable road user crashes in neighboring grid cells to be accounted
for in the two NB model specifications. The accounting of spillover effects
in the SLX model is accomplished by the addition of spatially lagged
explanatory variables, presented in the following form:

Yi ¼ qWy þ bxi þ ei (4)

Where, q is the spatial autoregressive coefficient and Wy is the spatially
lagged dependent variable. The parameterization of Wy was completed
using a queen-contiguous spatial weight matrix in which immediate grid
cells were weighted with a value of one.
The result of this analytic approach was first an estimation of two aspa-

tial NB models, followed by the estimation of separate SLX models of e-
scooter trip generation and vulnerable road user crash counts that also
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included a spatially lagged dependent variable in their specification. These
models were specified using a multistep backwards elimination process.
First, the unadjusted Spearman correlation coefficients between each inde-
pendent variable and the model outcome was calculated, where network
and environmental factors with a coefficient above an absolute value of 0.1
were retained. Second, amongst those retained explanatory variables, if two
variables exhibited a strong association, then that variable with a weaker
association with the dependent variable was dropped. Using this subset of
prospective explanatory variables, a backwards elimination process was
employed until all remaining predictors were marginally significant
(p < 0:10). At last, the spatially lagged dependent variable was added to the
final model specification, with marginal effects for each significant pre-
dictor then calculated and reported.

4. Results

4.1. Spatial and descriptive overview

A visualization of generated Lime e-scooter trips, which began and ended
in Brookline during its 2019 pilot program, and vulnerable road user
crashes from the five years leading to and including the program’s launch
is provided in Figure 2. Given the land use composition of Brookline, it is

Figure 2. Lime e-scooter trips generated per grid cell and vulnerable road user crash sites by
injury severity.
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unsurprising that most trips and crashes were observed in the northern sec-
tion above Boylston Street. Two out of three 300-meter grid cells with at
least 1,000 e-scooter trips intersect Beacon Street; a boulevard aligned with
multifamily residences, commercial development, and 13 MBTA Green
Line C Branch stations. Higher frequencies of vulnerable road user crash
sites are in grid cells intersecting Boylston Street and the north-south corri-
dors of Harvard and Saint Paul Streets. Spatial spillover effects for both the
count of e-scooter trips generated and vulnerable road user crashes appear
clear, as does the positive correlation between these two transporta-
tion outcomes.
Descriptive statistics for the one-year count of e-scooter trips and five-

year count of vulnerable user crashes is provided in Table 1, in addition to
an overview of the different zonal network and environmental factors
explored in the NB count model specifications. On average, there were
about 75 e-scooter trips generated per 300-meter grid cell, with 2,155 trips
generated in the northcentral zone encompassing Coolidge Corner at the
intersection of Beacon and Harvard Streets. In terms of vulnerable user
crashes, the average grid cell had nearly 1.5 crashes, with the Coolidge
Corner zone averaging 7.6 vulnerable road user crashes per year.
Turning to network characteristics, the roadways in the average grid cell

of Brookline are mostly residential (55.27%), with only about seven percent
of roadways characterized as limited-access highways. Similarly, a majority

Table 1. Descriptive statistics for 250-meter grid cells in Brookline, Massachusetts.
Variable Mean St. Dev. Minimum Maximum

Transportation outcomes
Count of e-scooter trips originated 73.89 211.88 0 2,155
Count of vulnerable road user crashes 1.42 4.13 0 38

Network characteristics
Percent of roads: Motorway 0.24 2.30 0 29.09
Percent of roads: Primary 6.63 17.22 0 100
Percent of roads: Secondary 12.47 22.19 0 100
Percent of roads: Tertiary 19.90 21.46 0 100
Percent of roads: Residential 55.27 30.18 0 100
Percent of low level of traffic stress (LTS) facilities 52.47 28.90 0 100
Percent of moderate level of traffic stress (LTS) facilities 15.09 14.44 0 60.43
Percent of high level of traffic stress (LTS) facilities 11.98 17.07 0 90.25
Connected node ratio (ratio of 3þ 4-way nodes to all nodes) 0.74 0.34 0 1.00
Beta index (ratio of links-to-nodes) 2.14 1.03 0 6.00
Intersection density (nodes per square mile) 3,446.08 27,853.94 0 390,948.19

Environmental factors
Population density (persons per square mile) 245.46 325.79 0 1,542.00
Employment density (jobs per square mile) 14.44 47.94 0 1,542.00
Activity density (persons and jobs per square mile) 259.91 345.91 0 1,645.00
Jobs-housing balance (ratio of jobs-to-households) 0.17 0.59 0 6.00
Percent of commercial land use 8.20 20.49 0 100
Percent of residential land use 46.60 27.84 0 99.96
Percent of mixed-land use 3.30 11.68 0 90.60
Percent of open space 2.13 5.34 0 56.93
Bus stop density (bus stops per square mile) 14.30 31.54 0 190.25
Percent of area in rapid rail walkshed (one-half mile) 48.78 48.42 0 100

10 S. R. GEHRKE ET AL.



of the combined roadway and multi-use path network in the average 300-
meter grid cell can be characterized as having low LTS facilities; however,
many zones have a large share of higher-stress network links. Overall,
much of the street network in Brookline appears to be of a traditional,
grid-based design, as is evident by the average connected node ratio, beta
index, and intersection density values. As expected, given the general resi-
dential nature of Brookline, the average population density per grid cell is
higher than the average zonal employment density, the average jobs-hous-
ing balance ratio is below one, and the land use with the highest propor-
tion is residential for the typical grid cell. Additionally, the 300-meter grid
cells in Brookline have good access to public transit, with nearly one half
(48.78%) of the average zone falling within a one-half mile walkshed on a
Green Line station and the average zone containing over 14 MBTA bus
stops per square mile.

4.2. Trip generation of e-scooter riders

The results of the NB models analyzing factors associated with the fre-
quency of generated e-scooter trips per grid cell are presented in Table 2.
The results of both an aspatial model (i.e. standard NB model) and a model
which accounts for spatial correlation through incorporation of a spatial
lag parameter are presented. While the direction and magnitude of model
estimated parameters are generally similar for each model, the SLX model
provided a superior fit based on log-likelihood and was adopted as the
model of choice for this analysis. It is worth noting that the employment
density parameter was a significant predictor in the aspatial model; how-
ever, this predictor was no longer significant (p ¼ 0:101) when the spatial
lag parameter was incorporated. The results discussed in the remainder of
this section are based on the preferred SLX model of e-scooter trip

Table 2. Estimates for the aspatial and spatial negative binomial models of e-scooter
trips generated.

Variable

Aspatial model Spatial lag of X (SLX) model

b SE p-value b SE p-value dy/dx

Intercept –1.641 0.460 <0.01 –1.593 0.448 <0.001 –
Percent of low LTS facilities 0.001 0.001 0.068 0.009 0.005 0.061 0.054
Percent of moderate LTS facilities 0.003 0.001 0.003 0.023 0.009 0.009 0.136
Percent of roads: Primary –0.017 0.008 0.032 –0.016 0.008 0.039 –0.094
Connected node ratio 1.181 0.453 0.009 1.355 0.440 0.002 7.875
Jobs per square mile (x 100) 0.136 0.048 0.005 0.008 0.005 0.101 –
Percent of area in rapid rail walkshed 0.045 0.003 <0.001 0.037 0.003 <0.001 0.218
Percent of residential land use –0.001 0.001 0.008 –0.016 0.005 0.001 –0.090
Vulnerable road user crashes 0.114 0.026 <0.001 0.087 0.027 0.001 0.506
Spatial lag: E-scooter trips generated – – – 0.005 0.001 <0.001 0.026
Model summary
Log-likelihood –734.900 –727.901
Theta (SE) 0.476 (0.056) 0.526 (0.064)
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generation, with Table 2 also denoting the marginal effects (dy/dx) for each
significant parameter in the spatial model. The interpretation of the mar-
ginal effects is the expected change in e-scooter trips per a one unit change
in the explanatory variable, all else being equal.
With respect to the impacts of network characteristics on e-scooter trips,

the percent of facilities with a low LTS was associated with increased e-scooter
trip generation; an expected result since these facilities also tend to be more
attractive to cyclists and other vulnerable road users. Interestingly, the percent
of network facilities with a greater share of moderate LTS links in a grid cell
was associated with an even larger increase in e-scooter trips in comparison to
a grid cell’s percent of low LTS facilities; an expected increase of 0.054 and
0.136 e-scooter trips for a percent increase in the share of low and moderate
LTS facilities, respectively. This finding indicates that e-scooter riders may not
necessarily be choosing the most comfortable routes for their trips, although
this route decision may be limited by the availability of only moderate LTS
segments for connecting their trip ends. A previous study of e-scooter trip
generation in Washington, DC (Zou et al., 2020) echoed this finding by not-
ing that 70 percent of observed e-scooter trips originated on minor arterials,
collectors, and local streets with an annual average daily traffic volume
between 4,000 and 20,000. The increased percent of primary roads in a grid
cell was associated with a decrease in e-scooter trips; also, an expected result
as primary roads with limited-access are most likely not conducive to a com-
fortable e-scooter trip. Additionally, a higher connected node ratio within a
zone was associated with an increase in generated e-scooter trips (expected
increase of 0.79 trips per 0.1 increase in connected node ratio), with this
result likely related to the spatial observation that most e-scooter trips are
occurring in the northern section of Brookline that is characterized by fewer
cul-de-sacs and a more traditional street network design.
As for the environmental factors attributed to increased e-scooter trip

activity, the percent of a grid cell’s area within a rapid rail station’s
walkshed was found to be associated with a greater generation of e-scooter
trips. This model result warrants further research to determine whether
this relationship supports the notion that e-scooters provide a first mile-last
mile connection to Brookline’s rail services or if e-scooter trips are replac-
ing those trips that may be conducted using Green Line services with
tightly spaced stations. In terms of land use characteristics, an increase in
the percent of residential land uses in a grid cell was associated with fewer
e-scooter trips; further indicating that e-scooters are less likely to be used
in Brookline for home-based travel. These findings align with those from
an Austin, Texas study (Caspi et al., 2020) that found commuting to not be
the main purpose for shared e-scooter trips and that their adoption was
highest in areas with increased employment rates.

12 S. R. GEHRKE ET AL.



The frequency of vulnerable user crashes per grid cell was also included
as an independent variable, and the results suggest that higher zonal crash
counts were associated with increased e-scooter trips (0.51 increase in e-
scooter trips per vulnerable road user crash). An important model result
that reveals e-scooter riders may have greater exposure related to greater
trip activity along facilities in areas where there may be historical relative
safety risks for vulnerable road users. While factors related to these relative
safety risks are likely not fully captured in this analysis, this result high-
lights a probable connection that warrants future research to assess whether
e-scooter riders are exposed to risks similar to those of cyclists and other
vulnerable road users. Finally, the significant spatial lag parameter of e-
scooter trips generated in bordering zones demonstrates that spillover
effects are evident. An increase of 100 e-scooter trips generated across any
300-meter zone in Brookline is associated with an expected average
increase of 2.6 e-scooter trips originating in its neighboring zones.

4.3. Crash frequency of vulnerable road users

The results of NB models analyzing the network and environmental factors
associated with the frequency of vulnerable road user crashes per grid cell
are presented in Table 3. Similar to the analysis of e-scooter trips, two
models were developed: a standard NB model (aspatial) and an NB model
incorporating a spatial lag parameter. Again, the SLX model exhibited a
better overall statistical fit, and as such was selected as the preferred model
to be described below. Table 3 also provides marginal effects (dy/dx), which
represent the expected change in vulnerable road user crashes per a one
unit change in the predictor, all else equal.
Examining the results of the preferred SLX model, an increase in the

percent of network facilities within a grid that are characterized with a
high LTS was associated with an increase in vulnerable road user crashes.
This model result is likely due to the higher relative risk faced by

Table 3. Estimates for the aspatial and spatial negative binomial models of vulnerable road
user crashes.

Variable

Aspatial model Spatial lag of X (SLX) model

b SE p-value b SE p-value dy/dx

Intercept –3.322 0.744 <0.001 –3.937 0.834 <0.001 –
Percent of high LTS facilities 0.022 0.011 0.036 0.029 0.010 0.005 0.009
Connected node ratio 2.596 0.811 <0.001 2.819 0.879 0.001 0.842
Bus stops per square mile 0.014 0.005 0.003 0.014 0.005 0.002 0.004
Percent of open space land use –0.230 0.100 0.022 –0.206 0.098 0.035 –0.062
E-scooter trips generated 0.005 0.001 <0.001 0.003 0.001 <0.001 0.001
Spatial lag: Vulnerable road user crashes – – – 0.227 0.075 0.002 0.068
Model summary
Log-likelihood –237.304 –233.133
Theta (SE) 0.242 (0.051) 0.267 (0.057)
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vulnerable road users using these facilities, who must interact (sometimes
against their personal volition) with moderate-to-higher-speed traffic. As
with the estimated trip generation spatial model, the connected node ratio
was also associated with increased frequency in vulnerable road user
crashes, likely due to the higher exposure in these zones which necessitate
more frequent street intersection crossings and may have higher volumes
of vulnerable road users. As for environmental factors, a higher number of
MBTA bus stops per square mile was associated with increased vulnerable
road user crashes; an expected result given there is likely a higher volume/
activity of these road users in areas where bus services are available and
accessed. In contrast, grid cells with a larger share of open space land uses
were linked to a decrease in vulnerable road user crashes; an intuitive result
given that there is less activity from these road users in areas without major
trip generators.
A higher count of e-scooter trips generated within a grid cell was related

to a higher frequency of vulnerable road user crashes, with an expected
increase of one vulnerable road user crash within a five-year window asso-
ciated with the addition of 100 more annual e-scooter trips. This finding
demonstrates the same correlation identified as with the results of the e-
scooter trip generation model results and underscores a need for more
research to explore this relationship. At last, estimation of the spatial lag
parameter for vulnerable road user crashes in neighboring cells reveals sig-
nificant spillover effects, with an increase of 100 vulnerable road user
crashes in any Brookline grid cell associated with an expected average
increase of 6.8 vulnerable road user crashes in its neighboring grid cells.

5. Limitations and future direction

To build on this study’s contributions, future research on the mobility and
safety implications of shared e-scooter introduction should address its not-
able limitations. Foremost, due to the nascent nature of e-scooter services
in the study area, our study was unable to examine multiple years of e-
scooter crash data and, instead, investigated the five-year frequency of vul-
nerable road user crashes as a proxy variable in our spatial models. In
study areas where multiple years of e-scooter crash data are available, these
data should be modeled to more accurately compare e-scooter travel and
safety, while future studies with larger samples of crash data should also
explore the relationship between e-scooter travel and crash severity.
However, caution should be taken in future studies of e-scooter safety
when selecting a crash data set, as a meaningful subset of e-scooter crashes
may not involve a motorist and thus be underrepresented in police-
reported e-scooter crash records. Second, this study’s travel behavior and
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safety analyses would have likely been more robust and offered additional
insights if e-scooter trips and vulnerable road user crashes were assessed at
a refined unit of spatial analysis (i.e., routes, segments, intersections) or if
crash rates—rather than crash frequency—were to be modeled with mul-
tiple years of e-scooter trip activity as an exposure meaure. Third, given
the bidirectional associations displayed in the distinct NB models, where e-
scooter trip and vulnerable road user crash frequencies were predictive of
one another, future studies should explore the possibility for simultaneously
estimating these outcomes using a bivariate negative binomial distribution.
Additionally, the specification of the spatial autoregressive models could be
extended to also account for spillover effects of the predictors in order to
more decisively define the direct and indirect effects of all tested variables.
Finally, as noted above, this study only examined observed e-scooter trip
patterns for one of the three shared mobility providers operating during
Brookline’s pilot program. A more complete picture of the association
between shared e-scooter trip generation and vulnerable road user crash
frequency could be presented by including trip data from the other partici-
pating mobility service providers, which were not made available for this
study. While these improvements should be considered in future efforts, we
believe our study offers new-found evidence in better understanding the
zonal factors, trip patterns, and safety considerations attributed to e-
scooter activity.

6. Conclusion

This study utilized e-scooter data from one of three micromobility service
providers operating in Brookline to understand the spatial patterns and
predictors of e-scooter trip generation during the town’s eight-month pilot
program. These data were complemented with five-year crash frequency
data on vulnerable road users and a set of zonal-based network and envir-
onmental characteristics to explore their interrelationships and offer needed
insights on the mobility and safety implications of shared e-scooter service
introduction. Study findings reveal the prospect for these emergent mobility
services to enhance the travel options for residents of communities where
they have been introduced as well as emphasizing a growing need for
improvements in the provision of improved infrastructure permitting the
safe operation of shared micromobility devices.
In the context of Brookline, e-scooters appear to be predominately used

for conducting non-home-based travel and in areas that are also correlated
with higher frequencies of vulnerable road user crashes. The former study
finding, evident by the associations between residential land uses and
employment density with e-scooter trip generation, suggest the benefit of
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e-scooters in offering a convenient and non-automotive mobility option to
individuals away from their residence. However, the latter study finding
underscores the importance for further safety considerations to accompany
the increased adoption of newer micromobility services such as e-scooters
whose riders have an increased crash risk when interacting with drivers of
larger motorized vehicles (Schleinitz, Petzoldt, & Gehlert, 2020) and may
be more conflict prone than cyclists (Guo, Sayed, & Zaki, 2020). After
accounting for the spatial spillover effects, an increase in vulnerable road
user crashes was predictive of increased e-scooter trip generation, and a
rise in generated e-scooter trips was significantly predicted by a higher
areawide count of vulnerable user crashes. Looking more narrowly at the
comfort levels afforded by the transportation networks of particular areas,
an increase in the share of facilities characterized with a low or moderate
level of traffic stress were related to increased e-scooter trip generation;
whereas, a greater percent of high level of traffic stress facilities was attrib-
uted to an increase in vulnerable road user crashes. Taken together, these
study findings illustrate the need for communities genuinely interested in
promoting the further utilization of shared micromobility services to intro-
duce initiatives such as lowering speed limits, reducing vehicle travel lanes,
and introducing separated pathways and infrastructure, where these actions
to improve level of traffic stress are feasible.
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