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Abstract
Early optimism for ridehailing services to complement existing public transit services and 
offer individuals another shared mobility service with reduced travel costs and improved 
travel times have largely proven to be unsubstantiated. This unwelcomed outcome, in part 
due to the popularity of ridehailing services among wealthier populations and restrictions 
on the less-expensive ridesharing service in some urban settings, has likely instead resulted 
in heightened disparities in access to this on-demand mobility option for historically-mar-
ginalized populations and under-resourced communities. This hypothesis is examined by 
estimating the macro-level socioeconomic and built environment determinants of ridehail-
ing pick-ups and drop-offs in the Phoenix metro region with spatial lag of X modeling. A 
geographically weighted regression (GWR) model of vehicle miles traveled was then esti-
mated using route-level ridehailing data from a third-party mileage tracking app to identify 
zonal attributes associated with this measure of vehicle-based exposure. Together, study 
findings highlight the benefits and drawbacks of greater ridehailing service activity, iden-
tifying a need for programs and interventions that safeguard and improve access to afford-
able high-quality mobility options for transportation disadvantaged neighborhoods.

Keywords Ridehailing · Ridesourcing · Transportation network company (TNC) · Spatial 
equity · Geographically weighted regression

Introduction

Study context

In the decade prior to the onset of the Covid-19 pandemic, ridehailing services emerged 
as a competitive alternative to more established mobility options. The convenience for 
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individuals to schedule a reliable on-demand service from their home, workplace, or 
elsewhere held promise as a panacea for lowering travel costs, reducing congestion, and 
improving travel times, if these services were shared with other passengers (Chan and 
Shaheen 2012). Ridehailing services in the United States instead arose as a predominantly 
single-party mobility service (Gehrke et al. 2021), raising alarming sustainability concerns 
including higher travel costs (Young et al. 2020), increased traffic volumes (Erhardt et al. 
2019), and replacement of public transit services (Gehrke et al. 2019). These results have 
likely exacerbated existing disparities in mobility access for individuals who cannot afford 
relatively expensive ridehailing services or reside in neighborhoods where decreased tran-
sit ridership revenue and increased roadway congestion due to ridehailing service popular-
ity have weakened the availability and quality of more affordable public transit services.

Social distancing and government-mandated stay-at-home orders in response to public 
health risks of Covid-19 disease transmission have further destabilized public transit sys-
tems, highlighting the systemic inequalities in mobility access for poor and historically dis-
advantaged residents (Monahan and Lamb 2022). Although ridehailing activity similarly 
diminished, the substitution of ridehailing services for public transit adoption brought on 
by changing consumer preferences and declines in service quality has continued during 
the pandemic, with evidence suggesting neighborhoods of greater affluence and transit ser-
vice availability had higher substitution rates (Meredith-Karam et al. 2021). Acknowledg-
ing that trends in public transit decline and single-party ridehailing popularity are likely to 
resume once Covid-19 health risks have been assuaged, the identification of where spatial 
disparities in ridehailing activity exist becomes necessary toward informing transportation 
policies and programs that help ensure under-resourced communities have equitable access 
to emergent mobility services that have adversely impacted more accessible travel options.

This study aims to identify features of neighborhoods which have observed a dispropor-
tionate share of the benefits (and disadvantages) from greater ridehailing utilization and 
activity. Specifically, this study analyzes a cross-section of multiyear ridehailing data col-
lected for a major United States metro region to estimate the macro-level socioeconomic 
and built environment features associated with ridehailing service pick-up and drop-off 
frequencies as well as ridehailing-related vehicle miles traveled (VMT). By doing so, this 
study seeks to identify communities and contexts where ridehailing service demand was 
greatest and those neighborhoods where an increased adoption of ridehailing services 
unfavorably affected residents via exposure rather than improved access to a multimodal 
transportation system. This multifaceted examination of ridehailing activity seeks to bring 
greater attention to the spatial equity implications of these services and supply evidence 
for new interventions that seize a second opportunity to define who can access ridehailing 
services once the pandemic subsides, and their popularity inevitably rebounds.

Ridehailing and socioeconomic context

Ridehailing studies continue to suggest that significant associations exist between the 
adoption of these car-based services and individuals of certain socioeconomic backgrounds 
and mobility profiles. In the United States, younger, more educated, and wealthier adults 
appear most likely to adopt ridehailing services (Alemi et al. 2018a; Gehrke et al. 2019; 
Loa and Habib 2021). In an early survey-based study, Rayle et al. (2016) found that 60% of 
ridehailing passengers in San Francisco were male and 75% of respondents were younger 
than 35 years. Ridehailing passengers also seem more likely to adopt non-car travel modes 
including public transit (Conway et al. 2018; Grahn et al. 2019; Sikder 2019; Das 2020), 
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with technological aptitude also identified as an indicator of ridehailing adoption (Lavieri 
and Bhat 2019).

Equitable access of ridehailing services among individuals identifying as a racial or eth-
nic minority has also been associated with service utilization in significant, albeit diver-
gent ways. Clewlow and Mishra (2017) identified Black/African American individuals 
in Chicago as more likely to use ridehailing services compared to similarly historically-
marginalized populations, whereas Di et al. (2019) found areas with more White residents 
to have disproportionately higher levels of adoption. Studying ridehailing and traditional 
taxi services, Pan et  al. (2020) found in New York City, equitable access to these com-
peting services for unemployed residents increased over time and after ridehailing service 
introduction.

Access to fewer vehicles has been correlated with an increased likelihood of adopt-
ing ridehailing services and other shared mobility options including public transit (Cir-
cella and Alemi 2018; Grahn et al. 2019; Sikder 2019; Young and Farber 2019). Clewlow 
and Mishra (2017), however, found minimal differences in auto ownership rates between 
transit- or ridehailing-only households and car-centric households. Regarding household 
structure, households without children are generally more likely to adopt ridehailing ser-
vices (Alemi et al 2019). Analyzing National Household Travel Survey data, Conway et al. 
(2018) reported that higher-income households adopted ridehailing services at a dispro-
portionately higher rate than households in lower-income cohorts. However, conflicting 
findings in certain contexts have been reported (Gehrke et al. 2019); with suggestions that 
ridehailing service adoption is popular on both ends of the income spectrum (Alemi et al. 
2018a).

Examining neighborhood-level sociodemographic and economic context, Gehrke 
(2020), in a study of Uber service area expansion in three metropolitan areas, found that 
San Francisco neighborhoods with a higher share of young adults and zones with a greater 
share of adults with advanced college degrees were positively connected to expanded ser-
vice areas. Brown (2019) echoed these findings in a Los Angeles study where areas with a 
higher percentage of young adults and auto-less households were associated with increased 
Lyft trip frequency, while also noting that neighborhoods with Hispanic or Asian majori-
ties were negatively associated with ridehailing trip frequency. Whether studied at the indi-
vidual or neighborhood unit, the above research suggests that significant variations in ride-
hailing demand exist across social equity indicators. However, differences in study findings 
are related to study area, data source, and analytic design decisions, leaving planners and 
decisionmakers with an unclear understanding of the transportation equity problems cre-
ated with the emergence of ridehailing services (Jiao and Wang 2021).

Ridehailing and built environment

Areas with more activity opportunities are observed to produce higher ridehailing service 
adoption rates. Studying seven major metropolitan regions, Clewlow and Mishra (2017) found 
29% of respondents in urban areas had adopted ridehailing services, while only 7% of subur-
ban residents reported the same behavior, suggesting greater ridehailing service viability in 
neighborhoods with greater population and employment densities. Studies into the role that 
ridehailing services play in bridging local accessibility gaps have found improvements in 
equitable access after service introduction in more suburban settings outside regional cores 
(Acheampong et  al. 2020; Abdelwahab et  al. 2021). However, ridehailing services tend to 
favor urban areas disproportionately due to the inherent demand provided by their greater 
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activity densities (Dey et al. 2021), which is also associated with shorter travel and wait times 
as well as decreased costs (Conway et al. 2018).

Yu and Peng (2019) further underscored how built environments conducive to high-qual-
ity transit service are also likely to be catalysts for ridehailing activity, finding that greater 
land use entropy in addition to transit stop and sidewalk density were associated with greater 
ridehailing service utilization. Greater land use mixing as well as stronger local and regional 
accessibility have been found to predict ridehailing service use elsewhere (Sabouri et  al. 
2020). Although other studies have found residents in areas of greater mixed-use favor active 
transportation modes over ridehailing services (Alemi et al. 2018b), ridehailing service use 
continues to be linked to walkable neighborhoods (Malik et al. 2021) characterized by greater 
intensities of restaurants, cafes, and points of interest near an individual’s residence (Dey et al. 
2021).

Regarding travel patterns, a positive association has been consistently found between 
ridehailing adoption and higher VMT totals than would be observed without its availability 
(Henao and Marshall 2019; Tirachini and Gomez-Lobo 2019; Das 2020). An outcome likely 
attributed to deadheading, which is defined as the miles that a ridehailing driver travels with-
out a passenger inside their vehicle (Nair et al. 2020). This commonly occurs when ridehailing 
drivers travel between a trip’s destination and the origin of their next pick-up, with this phe-
nomenon found to have contributed to an additional 70 percent of VMT by ridehailing driv-
ers (Henao and Marshall 2019). While studies have started to associate increased ridehailing 
demand with dense and walkable neighborhoods that also promote efficient transit systems, 
there is scant evidence describing neighborhood attributes associated with ridehailing travel 
between trip origins and destinations (Marquet 2020).

Study contributions

This study advances a growing evidence base by addressing two identified research gaps. First, 
this study investigates ridehailing activity patterns in the Phoenix, Arizona urbanized area, a 
populous, southwestern region of the United States that has to-date been underreported in the 
literature. A Phoenix case study is of particular interest given that cost-efficient pooling ser-
vices have yet to be offered by either Uber or Lyft in this region, which also has an extensive 
bus system but limited light rail transit services. Thus, individuals in areas where ridehailing 
activity has flourished are likely to have replaced an established shared mobility option with a 
more expensive, exclusive travel alternative. A second study contribution is the quantification 
of revenue-producing trip distances that were used to identify ridehailing VMT and examine 
its association with spatial equity-related and environmental determinants of this less-under-
stood measure of ridehailing activity in addition to the frequency of ridehailing pick-ups and 
drop-offs. By analyzing the socioeconomic and built environment determinants of these three 
ridehailing outcomes with spatial econometric modeling techniques, this study helps to offer 
new insights into the potential for social inequities in ridehailing activity and travel patterns 
after accounting for spatial variations in this transportation-land use interaction.
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Data

Study area

For this study, the Phoenix metro region refers to the Census-defined urbanized area of 
Phoenix and Mesa that is found within Maricopa County, Arizona (Fig. 1). Per 2015–2019 
American Community Survey estimates, this definition of the Phoenix region houses over 
3.92 million residents, with Phoenix accounting for more than two-fifths of the region’s 
population (1.63 million residents), followed by the City of Mesa (499,720 residents) 
bordering to its east. The next four largest cities within the region (Chandler, Scottsdale, 
Glendale, and Gilbert) are comparable in population, ranging from 252,692 to 243,254 
residents. Tempe, home to Arizona State University’s main campus, is the region’s seventh 
largest city with 187,454 residents and its densest with 7.29 residents per acre.

In terms of travel, the percentage of workers over 16 years old in the Phoenix metro 
region who commute by automobile (alone or pooled) generally exceeds the national aver-
age (85.3%), with 86.1% of workers in the Phoenix-Mesa region commuting by car, truck, 
or van and only 1.8% commuting by public transit (excluding taxis). Unfortunately, ACS 
ridehailing commute mode share data are not available, as the Census defines ridehail-
ing services in a catchall category that includes taxicabs, motorcycles, bicycles, and other 
means. However, using 2015–2019 ACS data as a top-end estimate of ridehailing mode 
shares, Tempe (3.1%), Scottsdale (2.2%), Phoenix (2.0%), and Glendale (2.0%) can be 
observed as having the potentially highest modal splits for this emergent mobility service 

Fig. 1  Phoenix-Mesa, Arizona urbanized area
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in the region. Assessing 2017 NHTS data, Conway et  al. (2018) noted roughly 15% of 
adults living in the Phoenix-Mesa-Scottsdale metropolitan area adopted a ridehailing ser-
vice (not traditional taxi service) in the past month. Herein, while ridehailing adoption and 
utilization trends for the Phoenix metro region are comparatively low, it must be noted that 
neither Uber nor Lyft offer their passengers the less expensive and often more efficient 
pooled ride option.

To investigate local variations in ridehailing travel patterns and spatial determinants 
of ridehailing trip frequency and VMT in this understudied metro region, a zonal system 
of 2673 one-mile hexagons was casted across the study area. Hexagonal sampling areas 
have been adopted in previous studies to allow for a consistent spatial distribution of zones 
across study areas, with the desirable property that the centroids of all neighboring hexa-
gons have identical Euclidean distances between them (Liao 2021; Jiao et al 2021). How-
ever, one must recognize that the choice of any artificial boundary for spatial analysis is 
likely to result in potential measurement errors attributed to the Modifiable Areal Unit 
Problem (Openshaw 1984). The decision herein to choose a one-mile hexagon zonal sys-
tem was made after also investigating the adoption of a two-mile diameter and determining 
the former sampling area better captured the heterogeneity in zonal socioeconomic context 
and built environment data while maintaining a reasonable connection between neighbor-
hood contexts and summarized information of ridehailing pick-ups, drop-offs, and VMT 
(Wang and Noland 2021).

Ridehailing travel data

Ridehailing trip data were provided by the third-party ridehailing driver assistant app, Sher-
paShare, which aids drivers in their accounting of vehicle mileage and passenger escorting 
activities. The complete data set contained 87,124 GPS traces of single-party ridehailing 
trips that originated and terminated in the Phoenix metro region; collected for each Octo-
ber between 2015 and 2019. The month of October was selected due to data availability 
limitations, with the calendar month adequately exemplifying typical travel conditions in 
the region as there are no observed holidays, schools are in session, and weather condi-
tions are generally mild. The data set was aggregated to a cross-section of all observed 
GPS traces and trip end points from the five Octobers, permitting a more stable and robust 
statistical examination of ridehailing travel patterns. Every ridehailing trip in the final data 
set originated in the region’s inner core, approximately bounded by a semi-belt formed by 
Arizona State Highway 101 (AZ-101 or Pima Freeway) to the north and Arizona State 
Highway 202 (AZ-202 or South Mountain Freeway) to the south, and terminated anywhere 
within the Phoenix metro region. These data were filtered to exclude ridehailing travel 
classified by the driver to have been conducted for personal rather than business purposes, 
resulting in a removal of 17,304 records. One last data set reduction step was performed to 
eliminate traces that could not be map-matched to the street network—described in more 
detail below, which resulted in a final study sample size of 65,240 trips.

Although ridehailing traces given by SherpaShare roughly aligned with the street net-
work, a map-matching process was undertaken to attribute network characteristics and 
more precise trip lengths to the ridehailing data set. GraphHopper, an open-source Java 
library and web-based routing service, was used for this map-matching process that tested 
the vertices along the recorded route against potential ‘correct’ candidate points on the 
OpenStreetMap (OSM) network (Ramm 2017). The Viterbi algorithm, a generalized 
predictive method of generating the most likely hidden path for a series of observations 
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(Newson and Krumm 2009), was adopted to sequence potential matches based on the 
provided vertex along the route and routing distances between consecutive map-matched 
candidates on the OSM network. Ridehailing trips marked as ‘unmatchable’ by this map-
matching algorithm were then passed onto a map-matching algorithm powered by Google 
Directions API as a second attempt to align trip routes onto the street network, with ride-
hailing trips map-matched by either process constituting the final sample.

Table 1 provides a summary of the ridehailing travel data set used in this study, after 
aggregating trip ends to a one-mile hexagon system and generating zonal frequencies of 
pick-ups and drop-offs as well as calculating the vehicle mileage of the recorded ridehail-
ing trips in each hexagon. In reviewing the annual count of zones with ridehailing activity 
and VMT averages, variation in the data set was observed. A decrease in ridehailing VMT 
from October 2015 to October 2016 occurred, followed by an increase over the next three 
Octobers and a second ridehailing activity decrease observed between the final 2 months. 
Period-to-period variation was confirmed after conducting a Kruskal–Wallis test on ride-
hailing VMT that found statistically significant differences ( �2 = 80.15, p < 0.01). Simi-
larly, further Kruskal–Wallis tests found statistically significant differences across the five 
Octobers for trip generation ( �2 = 51.74, p < 0.01) and trip attraction ( �2 = 64.52, p < 0.01) 
activity. This variation is most likely an artifact of the sampled data set being obtained 
from a private company that encounters peaks and valleys in its market penetration as it 
competed with opposing mileage-tracking services rather than any waxing or waning in 
the adoption of ridehailing services, which likely experienced positive year-to-year growth.

While not shown in Table 1, these ridehailing travel data also provided useful summary 
statistics regarding the time these trips occurred and their average distance. Of the 65,240 
ridehailing trips originating in the Phoenix region’s inner core, over 23% were found to have 
occurred during peak travel periods, with 9.13% starting in the morning peak (6–9 am) and 
14.02% taking place during the evening peak (4–7 pm). This finding of significant ridehailing 
adoption during the most congested periods of the week is consistent with previous ridehailing 

Table 1  Descriptive statistics for 
ride-hailing trips

Variable Trip origins Trip destinations Vehicle 
miles 
traveled

2015 Zones 952 1193 1991
Mean 8.21 5.04 52.05
SD 18.43 15.46 125.02

2016 Zones 1112 979 2673
Mean 7.75

16.49
4.86 50.61

SD 11.90 121.56
2017 Zones 922 1263 2081

Mean 7.63 4.68 55.79
SD 15.13 10.39 120.65

2018 Zones 1039 942 2116
Mean 7.63 4.80 61.31
SD 16.76 11.77 123.09

2019 Zones 950 1217 2118
Mean 8.21 5.03 53.56
SD 19.22 12.59 111.81
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survey findings (Gehrke et  al. 2019). In this sample, the most popular time for ridehailing 
travel was during mid-day (9 am–4 pm) on Mondays through Fridays in which 32.22% of 
all trips were observed, followed by travel during any time on Saturday or Sunday (29.52%). 
Fewer ridehailing trips were recorded during weekday evenings (7 pm–12 am) or early morn-
ings (12–6 am), with shares of 6.43% and 8.69% trips, respectively. In general, these temporal 
shares of ridehailing activity were constant across the five periods, with a modest increase 
in mid-day shares occurring from October 2015 (5.59%) to October 2019 (7.26%) that was 
accompanied by a two-percent decrease in weekend activity shares from October 2015 
(7.64%) to October 2019 (5.38%). In the pooled sample, the average trip distance was 7.20 
miles, ranging from 6.64 miles per trip in October 2015 to 8.20 miles per trip in October 2018.

Socioeconomic context and built environment data and measures

Socioeconomic context metrics were calculated using population estimates provided by the 
2015–2019 ACS and employment figures derived from the 2018 Longitudinal Employer-
Household Dynamics (LEHD) data sets. These data were collected at US Census geog-
raphies—ranging in size from blocks to tracts—that were then summarized to one-mile 
hexagons using an area-based apportionment process to generate a robust set of area-wide 
characteristics based on person- and household-level attributes. Variables at the former level 
describe the share of residents within a hexagon classified by different Census-designated 
categories of sex, age, education, race/ethnicity as well as immigrant and work status. These 
metrics were complemented with household-level variables related to annual income, poverty 
status, housing unit tenure, vehicle ownership, and Internet access as well as a zone’s percent-
age of residents employed in low- ($15,000 or less annually), medium- ($15,001 to $39,999 
annually), or high-wage (more than $40,000 annually) occupations.

Built environment measures selected for this study span three distinct categories: land 
development patterns, urban design, and transportation systems (Frank and Engelke, 2001). 
Land development pattern measures, including population, employment, and activity (sum of 
population and employment) density as well as jobs-population ratio, were constructed using 
the ACS and LEHD data sources. The share of workers in a hexagon across different catego-
ries contains the same wage breaks as the socioeconomic metrics but instead describes the 
area’s workforce and its businesses. Urban design and transportation system variables were 
constructed from OSM data. Three metrics—intersection density, connected node ratio, and 
beta index (the number of links divided by number of vertices)—define the overall connectiv-
ity of a hexagon’s street network (Levinson 2012; Gehrke and Welch 2017), while the percent-
age of primary, secondary, tertiary, and residential roads was calculated using OSM’s highway 
tags and describes an area’s predominant road infrastructure. Finally, the percentage of a hexa-
gon’s area that lies in a one-half-mile areal buffer of a Valley Metro light rail transit station 
was created as another independent variable to test in the statistical modeling process. Table 2 
summarizes these built environment and socioeconomic context variables at a one-mile hexa-
gon geography for all regional (destination) zones and zones located within the origin area.
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Table 2  Descriptive statistics for neighborhood-level characteristics

All zones Origin zones

Variable Mean SD Min Max Mean SD Min Max

Socioeconomic context
Sex: Male 0.49 0.05 0.00 1.00 0.49 0.05 0.00 1.00
Sex: Female 0.50 0.05 0.00 0.64 0.50 0.05 0.00 0.64
Age: Less than 18 years old 0.23 0.09 0.00 0.46 0.23 0.08 0.00 0.46
Age: 18–34 years old 0.21 0.10 0.00 0.86 0.24 0.10 0.00 0.86
Age: 35–44 years old 0.12 0.04 0.00 0.23 0.13 0.03 0.00 0.21
Age: 45–64 years old 0.26 0.07 0.00 0.50 0.25 0.06 0.00 0.43
Age: 65 years old or more 0.18 0.15 0.00 0.90 0.14 0.10 0.00 0.83
Education: High school or less 0.62 0.19 0.00 1.00 0.66 0.20 0.00 1.00
Education: Bachelors or some college 0.23 0.11 0.00 0.46 0.21 0.11 0.00 0.46
Education: Masters of PhD 0.14 0.09 0.00 0.37 0.13 0.09 0.00 0.37
Race/ethnicity: Asian 0.04 0.04 0.00 0.33 0.04 0.04 0.00 0.33
Race/ethnicity: Black/African American 0.04 0.05 0.00 0.30 0.05 0.05 0.00 0.30
Race/ethnicity: Hispanic/Latinx 0.17 0.16 0.00 0.85 0.21 0.18 0.00 0.85
Race/ethnicity: White, Non-Hispanic 0.62 0.26 0.00 1.00 0.52 0.27 0.00 0.97
Immigrant status: Population foreign-born 0.12 0.07 0.00 0.48 0.14 0.08 0.00 0.48
Household income: Less than $35,000 0.21 0.13 0.00 0.78 0.26 0.14 0.00 0.78
Household income: $35,000-$74,999 0.28 0.10 0.00 0.66 0.30 0.10 0.00 0.66
Household income: $75,000–$149,999 0.30 0.10 0.00 0.57 0.28 0.10 0.00 0.55
Household income: $150,000 or more 0.21 0.17 0.00 1.00 0.16 0.14 0.00 0.66
Poverty status: Families below poverty line 0.11 0.10 0.00 0.80 0.14 0.11 0.00 0.80
Employment: Share of low-wage workers 0.19 0.03 0.00 0.33 0.19 0.03 0.13 0.33
Employment: Share of mid-wage workers 0.30 0.10 0.00 0.60 0.33 0.10 0.15 0.60
Employment: Share of high-wage workers 0.50 0.12 0.00 0.68 0.48 0.12 0.19 0.68
Work status: Adult unemployment 0.02 0.02 0.00 0.20 0.03 0.02 0.00 0.20
Internet access: Household subscriptions 0.88 0.12 0.00 1.00 0.85 0.13 0.00 1.00
Tenure: Homeowners 0.70 0.21 0.00 1.00 0.62 0.21 0.00 1.00
Tenure: Renters 0.29 0.20 0.00 1.00 0.37 0.20 0.00 1.00
Car ownership: 0 0.02 0.03 0.00 0.18 0.03 0.03 0.00 0.18
Car ownership: 1 0.19 0.11 0.00 0.71 0.22 0.11 0.00 0.71
Car ownership: 2 0.44 0.11 0.00 1.00 0.41 0.09 0.00 0.65
Car ownership: 3 or more 0.35 0.13 0.00 0.75 0.34 0.12 0.00 0.75
Built environment
Persons per acre 4.15 3.88 0.00 23.70 5.43 4.14 0.00 23.70
Jobs per acre 2.04 4.40 0.00 109.84 3.04 5.35 0.00 109.84
Persons and jobs per acre 6.20 6.50 0.00 117.57 8.48 7.16 0.02 117.57
Share of low-wage workplaces 0.22 0.10 0.00 0.66 0.21 0.09 0.00 0.66
Share of mid-wage workplaces 0.35 0.10 0.00 1.00 0.35 0.10 0.00 0.73
Share of high-wage workplaces 0.40 0.15 0.00 1.00 0.42 0.16 0.00 1.00
Jobs-population ratio 1.25 18.20 0.00 788.00 1.72 22.40 0.00 788.00
Intersections per acre 0.69 0.61 0.00 4.00 0.80 0.57 0.00 4.00
Connected node ratio 0.92 0.26 0.00 1.00 0.96 0.20 0.00 1.00
Beta index 0.93 0.26 0.00 2.00 0.96 0.21 0.00 2.00
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Methods

Ridehailing trip frequency

To identify a set of spatial predictors of ridehailing trip frequency, base negative bino-
mial (NB) models of the count of ridehailing trips that originated and terminated within 
each one-mile hexagon were estimated using cross-sectional data of all ridehailing 
trips sampled for each October between 2015 and 2019. An NB modeling approach 
was adopted for this first analysis since the travel outcome recorded in each zone is a 
non-negative integer and overdispersion is likely to exist in its distribution. The ability 
of this model structure to relax the equidispersion assumption, stating that an equality 
in conditional mean and variance functions must exist, which is inherent to a Poisson 
count model is a clear advantage for selecting a negative binomial model structure that 
will default to the Poisson model structure if overdispersion is not present in the data 
set.

When analyzing ridehailing trip generation and attraction data aggregated to a 
geographic unit of analysis, unobserved spatial correlations may be present. As such, 
a global Moran’s I statistic (Moran 1950; Anselin 1995) was estimated to determine 
whether spatial autocorrelation, which would introduce bias to the base NB model esti-
mates, exists.

where, wij represents the elements of a spatial weight matrix, S0 =
∑

i

∑

jwij is the sum of 
the weights, and n is the number of zones (one-mile hexagons). This formulation shows 
Moran’s I to be a cross-product statistic between a variable and its spatial lag (the average 
value of that variable in neighboring hexagons), with the statistic expressed in terms of 
deviations from the mean. In testing the null hypothesis that trip end counts exhibit spa-
tial randomness, the estimated Moran’s I statistic and significance of its accompanying test 
enabled the null hypothesis to be rejected, with the spatial distribution of high and low trip 
end values per hexagon determined to be more clustered than would be expected in a spa-
tially random distribution of these ridehailing travel metrics.

If spatial autocorrelation in these outcomes was found, the estimation of the spatial 
lag of X (SLX) model (Vega and Elhorst, 2015) was performed to account for any spa-
tial spillover effects related to the count of ridehailing trip origins and destinations in 

(1)I =

∑

i

∑

j wijzi × zj∕S0
∑

i z
2

i
∕n

Table 2  (continued)

All zones Origin zones

Variable Mean SD Min Max Mean SD Min Max

Share of primary roads 0.06 0.24 0.00 1.00 0.07 0.25 0.00 1.00
Share of secondary roads 0.04 0.20 0.00 1.00 0.04 0.19 0.00 1.00
Share of tertiary roads 0.02 0.15 0.00 1.00 0.02 0.14 0.00 1.00
Share of residential roads 0.67 0.47 0.00 1.00 0.68 0.47 0.00 1.00
Half-mile light rail transit shed 0.02 0.14 0.00 1.00 0.03 0.18 0.00 1.00
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neighboring one-mile hexagons that was not accounted for in the base NB model speci-
fications. Controlling for these spillover effects in the SLX model is accomplished by 
the addition of a spatially lagged explanatory variable, presented in the following form:

where, � is the spatial autoregressive coefficient and Wy is the spatially lagged dependent 
variable. The parameterization of Wy used a queen-contiguous spatial weight matrix in 
which immediate hexagons were weighted with a value of one.

Model specification was pursued by adopting a multistep approach of stepwise and least 
absolute shrinkage and selection operator (lasso) variable selection techniques (Tibshirani 
1996). Initially, a single-variable model was estimated for all neighborhood socioeconomic 
and built environment predictors of trip frequency at the origin and destination zone, sepa-
rately, with predictors found to be marginally significant (p < 0.10) retained. Second, the 
unadjusted correlations between these remaining independent variables were assessed and, 
of those that were moderately correlated, the variable with the weaker association with 
the travel outcome was removed from further consideration. Third, using this reduced set 
of noncorrelated and statistically significant predictors of trip frequency, a lasso modeling 
approach, which uses regularization penalties on the overall model fit to minimize empiri-
cal errors and produce a sparse and potentially more interpretable specification, was imple-
mented (Tibshirani 1996; Zhao and Yu 2006). In this approach, a further reduced set of 
predictors was identified by forcing some predictors in the model to have a regression coef-
ficient of zero after imposing a constraint on the model parameters. If the resulting model 
specification produced non-significant coefficient estimates, then each non-significant 
predictor was iteratively removed via a backwards elimination process until all remaining 
model predictors produced statistically significant coefficient estimates.

Ridehailing vehicle miles traveled

Beyond estimating SLX models of trip frequency, the data set collected for this study is 
unique in its ability to allow for an investigation of ridehailing VMT accrued by drivers. 
Like the investigation of ridehailing trip end activity, this analysis explored the impact of 
socioeconomic context and built environment metrics operationalized at one-mile hexagon 
zones across the Phoenix metro region on ridehailing VMT aggregated to the same spatial 
scale. An ordinary least squares regression was estimated for this initial analysis, with the 
VMT outcome log transformed to improve linearity and stabilize variances in the produced 
coefficient estimates of the various independent variables. The specification of this base 
VMT model was obtained by following a similar multistep process to which was conducted 
for the NB models.

While estimation of a base VMT model can offer insights on the spatial determinants of 
ridehailing VMT, a global model will likely be insufficient for examining spatial heteroge-
neity (or nonstationarity) in which zonal attributes vary over space rather than being con-
stant across a study area (Fotheringham 2009). The identification of spatial autocorrelation 
in the VMT variable and many hexagon-level socioeconomic context and built environ-
ment variables was determined by estimating the aforementioned global Moran’s I statistic. 
In testing the null hypothesis that VMT values exhibit spatial randomness, the estimated 
Moran’s I statistic and significance of its accompanying test enabled the null hypothesis to 
be rejected, as was also found with the two ridehailing trip frequency outcomes. Accord-
ingly, a geographically weighted regression (GWR) model for VMT was supported, which 

(2)Yi = �Wy + �xi + �i
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provides local coefficient estimates for each spatial unit by using a set of spatial weight 
matrices based on a given hexagon and its neighboring zones. The GWR model structure is 
presented as (Brundson et al. 1996):

where, aik is the value of the k th parameter at hexagon i and the remaining components 
of Eq. (4) are found in a simple linear regression model: yi is the i th observation of the 
dependent variable y , xik is the i th observation of the k th independent variable, and �i is 
the normally distributed error term for the i th observation. Since the hexagonal units are 
evenly distributed over space, a Gaussian weighting function with a fixed bandwidth was 
adopted in this GWR application (Wang and Noland 2021). This function is expressed as 
(Fotheringham 2009):

 where, wij is the weight value of the observation at hexagon j for estimating a hexagon i 
coefficient, dij is the distance between the hexagons i and j , and h is a bandwidth or smooth-
ing parameter that lessens the steepness of a kernel by adding more adjacent hexagons in 
its local calibration as its value increases. The fixed bandwidth for the final GWR model 
was obtained by a computationally demanding technique in which many regression equa-
tions are estimated with various fixed bandwidths chosen by a leave-one-out cross-valida-
tion process until an optimal h value is determined (Bivand et al. 2008). An assessment of 
the performance of the one-mile hexagon GWR model and its ordinary least squares (OLS) 
counterpart is possible by comparing Akaike Information Criterion corrected (AICc) cal-
culations (Lu et al. 2014).

Results

Spatial factors associated with ridehailing trip frequency

Figure 2 shows the count of ridehailing trips in the study sample that originate in the area 
enclosed by AZ-101 to the north and AZ-202 to the south. As expected, most trips start 
in the most central portions of the Phoenix metro region, where residential and employ-
ment activity is relatively high. Particularly, a swath of high frequency ridehailing pick-ups 
extends from midtown Phoenix southeastward toward the northern part of Tempe; an area 
that traverses Phoenix’s city center, Sky Harbor International Airport, and Arizona State 
University’s main campus. Other clusters of high ridehailing trip production are located in 
South Scottsdale and its Old Town neighborhood as well as downtown Chandler, located 
south of Tempe. Fewer trips in this study sample were observed in the southwest section of 
the trip origin area, which encompasses South Mountain Park and Preserve and the urban 
villages of Ahwatukee and Laveen, and the northernmost part of the origin area. The for-
mer spatial pattern is likely due to the rural nature of the southwestern area, while the lat-
ter is more likely to be related to data set incompleteness. In all, spatial clustering of trip 
origin activity aggregated to this one-mile hexagon system was confirmed by calculating a 
global Moran’s index of spatial autocorrelation (I = 0.56, p < 0.001).

(3)yi = ai0 +
∑

k=1,m

aikxik + �i

(4)wij = exp
[

−1∕2
(

dij∕h
)2
]
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To help understand the neighborhood-level factors attributed to this described spatial 
pattern, Table 3 shows the SLX model estimates of ridehailing pick-up frequency as a 
function of socioeconomic context and built environment variables measured at a one-
mile spatial extent. The significant spatial lag parameter for trip generation frequency 
in neighboring hexagons confirms that the spatial clustering of trip origins remains evi-
dent after controlling for other zone characteristics. Looking at socioeconomic context 
variables in the final model, an increase in the zonal share of adults in the 18–34- and 
45–64-year-old cohorts was found to be associated with higher ridehailing pick-up fre-
quencies, with a similar positive relationship also observed between this modeled out-
come and the share of individuals in a one-mile hexagon who identified as Black/Afri-
can American or resided in a zero-car household. In contrast, those hexagons with a 
greater share of individuals younger than 18 years and residents who identified as male 
or Asian were associated with fewer generated ridehailing trips. A similarly negative 
relationship was modeled when looking at the neighborhood-level share of adults who 
were unemployed or households earning less than $35,000 annually and the frequency 
of ridehailing trips generated in a hexagon. As for built environment measures that were 
statistically significant, one-mile hexagons characterized by higher population densities, 
a more traditional gridiron street network design, and a greater representation of pri-
mary or secondary streets were all found to be connected to more ridehailing trips being 
generated in a given zone.

Turning to trip destinations, Fig.  3 shows the spatial pattern of neighborhoods in 
the region based on the frequency of sampled ridehailing trips that terminated within 

Fig. 2  Ridehailing trip generation frequency within inner core neighborhoods of the Phoenix metro region
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a one-mile hexagon, having originated inside the Phoenix metro region’s inner core. 
While this map similarly shows higher levels of ridehailing trip activity in the central 
portion of the study area, a wider dispersion of hexagons with trip destinations can be 
observed. Specifically, hexagons in North Scottsdale and East Mesa, where a higher 
concentration of predominately residential neighborhoods exist, have a disproportionate 
number of drop-offs compared to pick-ups. Outside of the origin area, several hexagons 
were found to have more than 25 ridehailing drop-offs, with those zones nearing Apache 
Junction to the east of Mesa and Phoenix-Mesa Gateway Airport in the region’s south-
east corner having higher frequencies. Akin to the trip origin patterns, a global Moran’s 
I calculation confirmed the presence of spatial clustering of trip destinations aggregated 
to the one-mile hexagon system (I = 0.52, p < 0.001).

Table  4 reveals estimation results of the SLX model examining the spatial predic-
tors of ridehailing drop-off frequency across the region. In contrast to the trip genera-
tion model findings, the spatial spillover of trip destination frequency into neighboring 
zones was not found to be significant after controlling for the socioeconomic context 
and built environment metrics specified in the base NB model. Zonal socioeconomic 
predictors in this trip destination model that were also statistically significant in the trip 

Table 3  Spatial lag of X (SLX) negative binomial model estimates of ridehailing trip frequency at origin

Variable β SE p-value

Intercept −0.34 0.48  < 0.001
Spatial lag: Trip generation frequency 0.01  < 0.01  < 0.001
Socioeconomic Context
Sex: Male −4.52 0.82  < 0.001
Age: Less than 18 years old −2.46 0.55  < 0.001
Age: 18–34 years old 5.33 0.52  < 0.001
Age: 35–44 years old −0.98 0.12 0.420
Age: 45–64 years old 2.98 0.79  < 0.001
Race/ethnicity: Black/African American 3.06 0.68  < 0.001
Race/ethnicity: Asian −3.77 0.82  < 0.001
Household income: Less than $35,000 −1.34 0.34  < 0.001
Work status: Adult unemployment −10.73 2.18  < 0.001
Car ownership: 0 8.37 1.36  < 0.001
Built environment
Persons per acre 0.11 0.01  < 0.001
Intersections per acre 1.10 0.07  < 0.001
Beta index 2.46 0.30  < 0.001
Share of primary roads 1.83 0.16  < 0.001
Share of secondary roads 1.93 0.20  < 0.001
Model summary
Number of hexagons 1794
Theta (SE) 0.67 (0.02)
Log-likelihood −6956
Akaike information criterion 13,949
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generation model included the share of male residents and individuals in the 18–34- 
and 45–64-year-old cohorts compared to the referent group of adults aged 65 years or 
older, with each factor having the same directional relationship with ridehailing drop-
off activity as with pick-up frequency. However, hexagons with a higher percentage of 
individuals under 18 years of age were found to have a higher frequency of ridehailing 
trip destinations, while the opposite association was found between trip attractions and 
zones with higher shares of adults in the 35–44-year-old cohort. Other socioeconomic 
context variables with a significant, positive relationship with ridehailing trip destina-
tion frequency included the share of households with annual incomes between $35,000 
and $74,999 and renter-occupied housing units, while a significant, negative relation-
ship with the outcome variable was found for the share of households with two vehi-
cles and adults with a high school education. An increased percentage of families living 
below the federal poverty line was found to have a positive relationship with ridehailing 
drop-off activity when measured at the one-mile hexagon geography. While this model 
finding may suggest that lower-income families are utilizing ridehailing services as an 
alternative to more affordable mobility options, a more plausible explanation may be 
that ridehailing trips tended to terminate in zones with higher concentrations of out-
of-home activities and more heterogenous residential populations. Supporting this 
last point, the five built environment measures that were significant in the ridehailing 
trip generation model were also significant and positively linked with ridehailing trip 

Fig. 3  Neighborhood-level ridehailing trip attraction frequency within the Phoenix metro region
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destination counts (persons per acre, intersections per acre, beta index, and share of pri-
mary or secondary roads).

Spatial factors associated with ridehailing vehicle miles traveled

To assess ridehailing travel patterns between trip origins and destinations, the distance 
of all observed ridehailing traces were clipped to hexagons, with total VMT observed 
in each zone summed. Figure  4 shows the enumeration and variation of ridehailing 
VMT across one-mile hexagons during the study’s timeframe. Unsurprisingly, in this 
map, hexagons with the highest volumes of ridehailing VMT can typically be found 
along major roadways and within the origin area bounded by the semi-belt of AZ-101 
in the north and AZ-202 in the south. Hexagons located between Arizona State High-
way 60 (AZ-60), which bisects Tempe and Mesa from Chandler and Gilbert, and the 
boundary of Interstate 10 and AZ-202 to its north, traversing the center of the study 
area and encompassing central Phoenix and Sky Harbor International Airport, were 
each observed to have VMT levels in the highest category. Another stretch of hexa-
gons with the highest volumes of ridehailing VMT extended north–south from North 

Table 4  Spatial lag of X (SLX) negative binomial model estimates of ridehailing trip frequency at destina-
tion

Variable β SE p-value

Intercept −1.90 0.51  < 0.001
Spatial lag: Trip attraction frequency  < 0.01  < 0.01 0.496
Socioeconomic context
Sex: Male −4.42 0.90  < 0.001
Age: Less than 18 years old 1.92 0.66  < 0.001
Age: 18–34 years old 5.00 0.59 0.013
Age: 35–44 years old −3.21 1.29  < 0.001
Age: 45–64 years old 2.77 0.70  < 0.001
Education: High school or less −3.77 0.38  < 0.001
Household Income: $35,000–$74,999 2.51 0.61  < 0.001
Poverty status: Families below poverty line 2.18 0.62  < 0.001
Tenure: Renters 1.55 0.32  < 0.001
Car ownership: 2 −1.56 0.41  < 0.001
Built environment
Persons per acre 0.20 0.01  < 0.001
Intersections per acre 1.25 0.08  < 0.001
Beta index 3.44 0.32  < 0.001
Share of primary roads 1.57 0.17  < 0.001
Share of secondary roads 2.22 0.20  < 0.001
Model summary
Number of hexagons 2673
Theta (SE) 0.41 (0.01)
Log-likelihood −8189
Akaike information criterion 16,416
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Scottsdale to South Chandler along AZ-101, while an additional stretch of higher VMT 
levels observed in the portion of Interstate-17 extending north from downtown Phoenix.

After log-transforming VMT calculations made at the one-mile spatial extent, this 
third ridehailing outcome was modeled as a function of socioeconomic context and 
built environment characteristics. Table 5 shows outcomes of the GWR model estima-
tion of ridehailing VMT, summarizing the local estimates for significant socioeconomic 
context and built environment predictors. All independent variables in the final model 
specification exhibited spatial autocorrelation. For all independent variables except sec-
ondary road shares, at least one cluster of hexagons exhibited a minimum or maximum 
local coefficient that differed in its direction of association to its global estimate. While 
this finding emphasizes the intuitive and consistent correlation between minor arterial 
roadway access and higher ridehailing vehicle exposure, the variation of other predic-
tors was quantified by measuring the interquartile range (IQR) to help highlight how 
the spatial distribution of these modeled effects can differ across a larger study area. 
Comparing the localized estimates of the GWR model to the global estimates of the 
OLS model, the median local coefficient values of each significant built environment 
predictor had the same directional relationship to its global mean estimate. Regard-
ing socioeconomic context, the local median and global mean coefficients for predic-
tors reflecting the share of adults 18 to 34 years old (IQR = 5.92) and adults older than 
25 years with an advanced college degree (IQR = 7.15) were positively associated with 
ridehailing VMT, as was the percentage of the foreign-born population within a hexa-
gon. However, the coefficient estimates for foreign-born population displayed the largest 

Fig. 4  Neighborhood-level ridehailing vehicle miles traveled (VMT) within the Phoenix metro region
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variation (IQR = 9.03), with changes in the effect’s sign indicating the existence of clus-
ters where a negative association with ridehailing VMT was found. In turn, zones with a 
greater share of households in the highest annual income cohort (IQR = 6.60) and those 
owning three or more vehicles (IQR = 3.69) were more likely to experience less ride-
hailing VMT near their homes than their counterparts, with these two factors having 
the weakest spatial variation of all social context predictors. Zonal measures of house-
hold Internet access (IQR = 6.60) and family poverty-level status (IQR = 8.75) were also 
negatively associated with ridehailing VMT; however, a positive global estimate of ride-
hailing VMT was found for the zonal measure of families living below the poverty line. 
Differences in the association of local and global estimates for this latter socioeconomic 
factor, where the local median is less than the global mean, and it having  the second 
highest measure of variation may signify that neighborhood clusters with a very high 
share of lower-income families are exposed to a disproportionately higher share of ride-
hailing VMT.

Figure 5 shows the local estimates for neighborhood-level variables often reported in 
the literature as being significant person-level predictors of ridehailing activity: age, educa-
tion, and income (or poverty status). Inspecting these three maps, local differences across 
the Phoenix metro region in the GWR modeled associations between ridehailing VMT and 

Table 5  Geographically weighted regression model estimates of ridehailing vehicle miles traveled (log-
transformed)

Variable Min Q1 Median Q3 Max Global

Intercept −52.24 −2.28 0.05 3.30 26.09 −1.17
Socioeconomic context
Age: 18–34 years old −38.62 0.52 3.51 6.44 30.04 4.89
Education: Masters of PhD −20.14 −3.19 0.96 3.96 23.35 4.05
Immigrant status: Population foreign-born −25.06 −1.82 2.25 7.21 64.38 1.07
Household Income: $150,000 or more −13.04 −3.87 −1.16 1.96 9.40 −0.70
Poverty status: Families below poverty line −26.41 −4.93 −0.93 3.82 26.50 0.82
Internet access: Household subscriptions −23.62 −3.77 −0.36 2.83 51.23 −1.23
Car ownership: 3 or more −9.49 −2.34 −0.64 1.35 21.11 −0.41
Built environment
Persons per acre −1.39 0.03 0.09 0.18 0.85 0.18
Jobs per acre −0.43 0.03 0.14 0.33 5.46 0.07
Share of mid-wage workplaces −11.65 −1.44 0.51 2.73 17.40 1.88
Share of high-wage workplaces −17.05 −1.51 0.05 1.23 12.39 0.94
Intersections per acre −0.52 0.49 0.81 1.26 2.34 1.06
Beta index −0.91 0.81 1.47 2.87 7.59 1.79
Share of primary roads −0.28 1.16 1.61 2.31 6.48 1.81
Share of secondary roads 0.04 0.57 0.88 1.15 1.76 0.67
Half-mile light rail transit shed −43.09 −4.04 −1.39 0.02 7.32 −1.01
Model summary
Number of hexagons 2673
Akaike information criterion corrected (OLS model) 8955
Akaike information criterion corrected 8442
Quasi-global R-squared 0.850
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these three attributes were found. In examining the relationship between the zonal shares of 
young adults and ridehailing VMT, a positive link (visualized in warmer hues) was found 
across most of the region (expected given the positive value of the first quartile estimate 
shown in Table 5) including one-mile hexagons near Grand Canyon University in western 
Phoenix and Arizona State University in northern Tempe. In contrast, neighborhoods near 
South Mountain and south of Interstate 10, which encompass South Mountain Community 
College, were found to have a negative link (visualized in cooler hues). Across most of the 
region, a positive association with ridehailing VMT can also be found for neighborhoods 
with a higher percentage of adults with an advanced college degree; however, a cluster of 
one-mile hexagons in the northwest that encompasses Surprise and the expansive retire-
ment community of Sun City West in addition to a stretch of zones in Old Town Scottsdale 
to the east of midtown Phoenix are shown to have a negative connection to observed ride-
hailing VMT. Turning to the map of lower-income family shares and ridehailing VMT, a 
majority of zones were found to have a negative modeled association (signified by the neg-
ative median estimate shown in Table 5), with most of these zones appearing in the eastern 
half of the study area. However, positive local estimates that align with the positive global 
mean estimate were found in the neighborhoods including and west of Phoenix’s central 
city and midtown areas, which also includes zones with higher trip end activity. Inside the 
origin area, a cluster of zones with the highest local estimates can be found in northern 
Avondale and the minority-majority City of Tolleson to its east as well as a stretch of zones 
in central Scottsdale intersecting East Shea Boulevard.

Conclusions

Ridehailing service growth before the Covid-19 pandemic raised important concerns about 
disproportionate access to this new mobility option for residents of under-resourced neigh-
borhoods (Abdelwahab et al. 2021) as well as the detrimental air quality and public health 
impacts of living where ridehailing demand and vehicle emissions exposure increased 
(Barnes et al. 2020). These topics were explored in this study by estimating socioeconomic 
context and built environment factors associated with aggregated ridehailing trip pick-ups 
and drop-offs as well as zonal VMT calculations. An examination of these three ridehail-
ing travel outcomes and accounting for the spatial spillover effects of ridehailing trip end 

Fig. 5  Local parameters for one-mile hexagon-level age, education, and household poverty status in geo-
graphically weighted regression (GWR) model of vehicle miles traveled (VMT)
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frequency and VMT offers evidence into the spatial equity implications of increased ride-
hailing activities in the Phoenix metro region.

Overall, this study’s analysis of macro-level predictors of trip end activity confirmed 
past research findings, while also suggesting that spatial inequities in ridehailing service 
adoption likely exist. Zones with a disproportionate share of lower-income households and 
unemployed adults, who are likely to have limited resources to cover higher transportation 
costs associated with frequent ridehailing service or private car use, were most likely to see 
lower ridehailing trip generation activity. Aligned with past ridehailing studies, trip genera-
tion model results found that zones with larger shares of young adults and zero-car house-
holds were associated with higher pick-up frequencies. However, in contrast, a positive 
association existed between ridehailing pick-up frequency and the zonal share of residents 
who identified as Black/African American. This unexpected finding has been shared else-
where (Clewlow and Mishra 2017) and may reflect residential and employment location 
clustering rather than passenger composition given that central and southwestern hexagons 
near AZ-60 have greater Black/African American representation and are denser housing 
and job districts. In analyzing ridehailing trip attraction, one-mile hexagons with a higher 
share of younger adults, more renter-occupied units, and higher population densities were 
positively linked to drop-off frequencies, while zones with a higher percentage of adults 
without a college education had a negative association with this ridehailing outcome. Yet, 
zones with a higher share of families living in poverty tended to have higher frequencies 
in ridehailing drop-offs. Without trip-level knowledge about the ridehailing passenger, 
there is difficulty in knowing whether ridehailing services are offering this population 
a competitive travel option or that zones with higher shares of lower-income residential 
populations often located near city centers are generally more attractive ridehailing travel 
destinations. While unexpected variations in the trip frequency models existed, the study 
findings of lower ridehailing trip generation rates for neighborhoods with higher shares 
of lower-income households and unemployed adults highlights a need for public policies 
that rebuild and help to bolster accessible and affordable bus services in under-resourced 
neighborhoods detrimentally impacted by ridehailing service introduction and the Covid-
19 pandemic. For all individuals who adopt ridehailing services, which includes adults 
whose families live below the poverty line, public–private efforts to make ridehailing ser-
vices more affordable via the reimplementation (or introduction) of pooling services and 
programs that shift ridehailing travel away from being a primarily single-party mobility 
option should remain a priority.

In this study’s latter half, the estimation of a GWR model of ridehailing VMT as a func-
tion of zonal socioeconomic and built environment attributes offered new evidence on an 
understudied travel outcome with exposure-related consequences. Importantly, the estima-
tion of local coefficients and mapping of select spatial equity-related model predictors per-
mitted a more nuanced investigation into the spatial variation of these modeled relation-
ships across the Phoenix region. Using route-level information, global estimates from an 
OLS analysis, like the trip generation model results, found that those zones with a higher 
percentage of households living below the federal poverty level were also more likely to 
experience higher volumes of ridehailing VMT. However, GWR model estimates, which 
had a negative local median and relatively higher IQR value, point to spatial variations 
in the relationship between this spatial equity predictor and ridehailing VMT. This model 
finding, when combined with the aforementioned trip generation model results regard-
ing lower-income households and unemployed adults, suggests that under-resourced 
households generally have more limited access to less-affordable ridehailing services and 
that some under-resourced neighborhoods are disproportionately exposed to the adverse 
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impacts of higher vehicle emissions as well as added roadway traffic that is slowing more 
affordable travel alternatives such as buses. By mapping localized GWR model estimates, 
the spatial variation in well-documented socioeconomic determinants of ridehailing activ-
ity were revealed, with central Phoenix neighborhoods—where spatial clusters of ridehail-
ing activity at and between trip ends were observed—displaying increases in ridehailing 
VMT associated with higher shares of younger adults and families living below the poverty 
level. A dichotomy in findings that when also seen with local variations in the relation-
ship between higher educational attainment and ridehailing VMT perhaps further illus-
trates the presence of spatial inequities in who benefited most by the growth of ridehail-
ing availability prior to the Covid-19 pandemic. Planners and policymakers must remain 
steadfast in supporting programs that promote ridesharing and subsidize ridehailing fares 
for lower-income travelers that better approximate public transit fares. This is especially 
true in the Phoenix metro region which has seen the introduction of autonomous ridehail-
ing services that operate in a limited area including parts of Chandler, Gilbert, Mesa, and 
Tempe (Waymo 2022). While autonomous technologies remain in their infancy and have 
yet to become a viable competitor to established services, results from a demonstration 
project in the region revealed these services to have higher ratings than driver-based ride-
hailing services for cost, comfort, convenience, and travel and wait times (Stopher et  al. 
2021). Mobility as a Service (MaaS), which bundles available mobility services including 
ridehailing and public transit under a common digital architecture that gives consumers the 
flexibility to subscribe to modes that best fit their travel needs (Matyas and Kamargianni 
2019), may offer a more immediate opportunity to promote a lower-cost and efficient travel 
alternative to car ownership if safeguards are employed by public officials to ensure greater 
social inclusion (Pangbourne et al. 2020).

Beyond its contributions to practice and the evidence base, limitations in this study’s 
methodology should be addressed through future research. Regarding the ridehailing travel 
data set, an analysis of route-level information for drivers representing both Uber and Lyft 
was a study asset; however, the observed trips only represent a marginal share of all ride-
hailing trips undertaken during this timeframe and likely exhibit bias related to driver par-
ticipation in the third-party app. Second, these sample data reflect ridehailing trips that 
originated in the innermost portion of the region; therefore, patterns and estimates related 
to ridehailing drop-offs and VMT outside of the origin area likely under-represent the true 
magnitude of ridehailing travel in the study’s timeframe. Third, the analyzed ridehailing 
data set, which is effective in accounting for annual variation in travel missing from most 
ridehailing studies to-date, does not capture month-to-month trip variations; although, 
October is considered a stable period for understanding travel patterns and behaviors. 
Fourth, while this study’s implementation of spatial modeling techniques helped to control 
for variations in the spatial distribution of ridehailing trip activity, future research should 
assess alternative specifications or methods such as a Spatial Durbin Model (e.g., Soria 
and Stathopoulos 2021) to account for spatial patterns in chosen trip frequency predictors. 
Finally, this study of neighborhood-level socioeconomic context factors somewhat assumes 
significant predictors of ridehailing activity are reflective of individuals who adopt these 
services. This contextual fallacy (Fowler et al. 2020) can only be resolved by analyzing per-
son-level data that have usually been collected by intercept surveys which have other biases 
and often produce smaller sample sizes to investigate. While these limitations warrant 
future consideration, this study has identified how ridehailing services prior to the Covid-
19 pandemic impacted urban neighborhoods in divergent and disproportionate ways. Given 
the likelihood that the lasting impacts of the Covid-19 pandemic may worsen near-term 
inequities in multimodal access, transportation planners, practitioners, and policymakers 
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must maintain high-quality and affordable mobility options are available and accessible to 
under-resourced neighborhoods and communities.
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