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Multiscale spatial analysis of macro-level determinants
of bicycle crash frequencies in the Phoenix metro
region

Steven R. Gehrkea , Brendan J. Russob, Michael P. Huffa, and
Edward J. Smaglikb

aGeography, Planning, and Recreation, Northern Arizona University, Flagstaff, Arizona, USA; bCivil
Engineering, Construction Management, and Environmental Engineering,
Northern Arizona University, Flagstaff, Arizona, USA

ABSTRACT
The realization of the many benefits of bicycling will not be
achieved in American regions until safer bike infrastructure
and bicycling conditions are presented to a more general
population. The Phoenix region—one of the nation’s most
populous—has sought policies and programs to increase bicy-
cling rates. Yet, the region continues to have a small mode
share, underscoring a need to motivate population-level bicy-
cling adoption. This study examines 2015–2019 bicycle-vehicle
crash data to identify those macro-level factors associated
with bicycle-vehicle crashes and a subset of crashes where a
serious injury or fatality occurred. Specifically, the effects of a
robust set of socioeconomic and built environment factors,
measured at three hexagon spatial extents, in negative bino-
mial and spatial Durbin models were estimated for the two
crash outcomes. Results show denser zones with a traditional
network design experienced more bicyclist-involved crashes,
as did zones with a higher percentage of low-income house-
holds and working-age adults. Findings, which also found spa-
tial clustering of total and severe bicyclist-involved crashes,
suggest that the targeted provision of safer bike infrastructure
and a more complete network in zones exhibiting certain
macro-level attributes holds promise in creating bike-friendly
conditions that generate more utilitarian and recreational bicy-
cling throughout the region.

KEYWORDS
bicycling; bicycle safety;
bicycle crashes; spatial
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1. Background

Bicycling as a mode choice provides several potential benefits, including
reduced congestion, lower transport-related emissions, and improved health
(Brown et al., 2016, de Hartog et al., 2010). Also, after the outbreak of the
COVID-19 pandemic, bicycling provided a socially distanced alternative to
shared travel modes as well as a desirable recreational activity. However,
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bicyclists are vulnerable roadway users who are not protected by an
enclosed vehicle compartment and, as such, are more likely than motor
vehicle occupants to sustain injuries in the event of a crash (NTSB, 2019).
In 2019, 871 bicyclists were killed in traffic crashes across the United States
(US) and 49,000 bicyclists were injured (representing a 4.3% increase com-
pared to 2018) (NHTSA, 2020), highlighting bicyclist safety as an immedi-
ate and important public health issue.
In response, several studies have recently analyzed factors associated with

bicyclist injury severity in crashes involving vehicles (Bahrololoom et al.,
2020; Chandia-Poblete et al., 2021; Lin & Fan, 2021; Robartes & Chen,
2017; Zhu, 2021). Although studies focused on the factors associated with
crash severity are needed, their preventive utility is limited because the
investigation of injury outcomes is only after an observed crash. To stop
bicycle-vehicle crashes from occurring in the first place, it is imperative to
examine and help understand those factors associated with the frequency
or occurrence of these crashes to effectively plan preventive countermeas-
ures. While it is common to analyze motor vehicle crashes at the segment
or intersection level, bicyclist-involved crashes occur much less frequently,
and it may be difficult to obtain meaningful results at these micro-levels.
Accordingly, bicyclist-involved crashes are often investigated at a macro
level (e.g., traffic analysis zone [TAZ], US Census block group), which
allows for consideration of potential associations with zonal characteristics
describing an area’s sociodemographic and economic composition, overall
street network, and built environment.
Past studies that have analyzed bicycle-vehicle crashes at a macro-level

geography include Osama and Sayed (2017), who analyzed factors associated
with bicycle-vehicle crashes in Vancouver, Canada, using TAZ geographies
with generalized linear regression and full Bayesian techniques. In finding that
several zonal attributes were associated with bicycle-vehicle crash frequency,
including exposure-related variables (e.g., bike and vehicle kilometers traveled)
and built environment variables such as traffic signals, transit stops, land use,
and roadway type, the authors concluded that there was significant spatial cor-
relation and an importance of accounting for such effects (Osama & Sayed,
2017). Guo et al. (2018) also developed macro-level bicyclist crash frequency
models at the TAZ level in Vancouver (1,700 total crashes). In this study, the
authors compared Poisson lognormal model (PLN), random intercepts PLN,
random parameters PLN, and spatial PLN model estimates, discovering that
the spatial model provided the best fit and that several exposure, roadway net-
work, and built environment variables were associated with TAZ-level bicyclist
crashes (Guo et al., 2018).
Cai et al. (2016) also investigated factors associated with bicycle-vehicle

crashes at the TAZ level using data from Florida. By estimating a series of
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negative binomial (NB), zero-inflated NB, and Hurdle NB models, the authors
found several traffic, roadway, and socioeconomic characteristics were associ-
ated with bicycle-vehicle crashes and declared the importance of accounting
for their spatial spillover effects (Cai et al., 2016). Amoh-Gyimah et al. (2016)
estimated NB, conditional autoregressive NB, and random parameters NB
(RPNB) models to investigate spatial factors associated with total, minor
injury, and serious injury bicycle-involved crash frequencies at Statistical Area
level 2 (spatial units with an average population of 10,000 persons) in
Melbourne, Australia. The authors determined that the RPNB model per-
formed best and that several exposure-, sociodemographic- and land use–
related variables were associated with bicycle-involved crash frequency, though
only four predictors were significant in respect to serious injury crashes
(Amoh-Gyimah et al., 2016). Ji et al. (2021) conducted a similar analysis at
Statistical Area level 2 units in greater Melbourne, Australia, using a semi-
parametric geographically weighted Poisson regression model; finding expos-
ure and street network variables as well as other spatial factors were associated
with bicycle crashes.
Chen et al. (2018) investigated the impacts of TAZ-level built environ-

ment measures on bicycle-vehicle crash frequency in Beijing, China,
through estimation of a Poisson lognormal random effects model
(PLREM). The authors concluded that exposure, roadway network, and
built environment characteristics were all associated with bicycle-vehicle
crash counts. Chen (2015) also employed a PLREM to investigate bicycle-
vehicle crashes at the TAZ level in Seattle, Washington, and found expos-
ure measures in addition to land use and road network characteristics to
be positively associated with bicycle-vehicle crashes, and that TAZ-based
crashes were spatially correlated. There have been other macro-level analy-
ses of bicycle crashes, including one study conducted in Greater London
that aggregated spatial information to a Super Output Area (Ding et al.,
2020), one conducted with Census block groups in Florida that included
separate analyses of both total and severe/fatal injury bicycle crashes (Saha
et al, 2018), one conducted with Census block groups that investigated the
count of minor, severe, and fatal injury bicycle crashes in Austin, Texas
(Sener et al., 2021), and another study considering factors at the TAZ-level
in Hillsborough County, Florida (Wang et al., 2017).
While the reviewed studies demonstrate that research investigating bicycle-

vehicle crashes at the macro level exists, an extensive review by Merlin et al.
(2020) pronounced a need for further investigation of macro-level factors in
bicyclist-related crash analyses due to inconsistencies in previous results. This
study answers that call by presenting a macro-level analysis of sociodemo-
graphic and economic, built environment, and street network factors—meas-
ured at three different scales—in a large, southwestern US metro region. The
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depth of predictors tested here expands on those explored in past studies
and includes important variables such as level of traffic stress classifica-
tion, presence of alcohol-selling establishments, and several street network
connectivity measures, as well as socioeconomic context variables related
to the representation of residents and workers in different wage categories.
Additionally, the measurement of these variables at three spatial extents
(one-half-, one-, and two-mile diameter hexagons), opposed to asymmet-
ric geographic scales typically adopted because of user convenience or
data availability, permits insights into the consistency and relative magni-
tude of a macro-level determinants of bicyclist-involved crashes. More
specifically, the adoption of hexagon sampling zones offers a desirable
property that the centroids of all neighboring hexagons have identical
Euclidean distances between them, while the choice of multiple spatial
extents allows an investigation of geographic scale sensitivity related to
the modifiable areal unit problem (Fotheringham & Wong, 1991). Finally,
this study accounts for potential spatial correlation through the estimation
of spatial Durbin models. In all, study findings are intended to offer evi-
dence for transportation planners, engineers, and decision makers aiming
to implement policies and countermeasures that improve bicyclist safety.

2. Methods

2.1. Study area

For this study, the Phoenix metro region refers to the Census-defined
urbanized area of Phoenix and Mesa positioned within Maricopa County,
Arizona. Per 2015–2019 American Community Survey estimates, this defin-
ition of the Phoenix region houses over 3.92 million residents, with
Phoenix accounting for over two-fifths of the region’s population (1.63 mil-
lion residents), followed by the City of Mesa (499,720 residents) bordering
to the east. The next four largest cities in the region (Chandler, Scottsdale,
Glendale, and Gilbert) are comparable in population, ranging from 252,692
to 243,254 residents. Tempe, home to Arizona State University’s main cam-
pus, is the seventh largest city in the region with 187,454 residents and the
densest, with 7.29 residents per acre.
The percent of workers older than 16 years old in the Phoenix metro

region who commute by automobile (alone or pooled) generally exceeds
the national average (85.3%), with 87.2% of both Phoenix and Mesa work-
ers commuting by car, truck, or van. In Phoenix and the next five largest
cities within the region, the percent of workers who commute by bicycle
is less than one, while the bicycle commute mode share in Tempe
is 3.17%.
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2.2. Data sources

The Arizona statewide police-reported crash data set analyzed in this study
was obtained for the years 2015 through 2019 from the Arizona
Department of Transportation (ADOT). This five-year data source was
chosen to increase the statistical value of data on crashes, which are rela-
tively rare events; represent a multiyear period that was not impacted by
travel disruptions associated with the COVID-19 outbreak, which was
declared a pandemic in March 2020; and temporally align with publicly
available macro-level data on socioeconomic context. These data were then
filtered to include only those crashes in the Phoenix metro region that
involved at least one bicyclist. This resulted in a total of 4,875 bicyclist-
involved crashes identified for inclusion in this study. The injury severity
of each crash-involved person is reported as one of five discrete categories
per the Arizona Crash Report Forms Manual (ADOT, 2017):

� K-Injury (fatal injury): Any injury that results in death within a 30-day
time period after the crash occurred.

� A-Injury (suspected serious Injury): Any injury other than fatal which
results in one or more of the following: Severe laceration resulting in
exposure of underlying tissues/muscle/organs or resulting in significant
loss of blood; broken or distorted extremity (arm or leg); crush injuries;
suspected skull, chest, or abdominal injury other than bruises or minor
lacerations; significant burns; unconsciousness when taken from the
crash scene; or paralysis.

� B-Injury (suspected minor injury): A minor injury is any injury that is
evident at the scene of the crash, other than fatal or serious injuries.
Examples include lump on the head, abrasions, bruises, minor lacera-
tions (cuts on the skin surface with minimal bleeding and no exposure
of deeper tissue/muscle).

� C-Injury (possible injury): An injury reported or claimed which is not a
fatal, suspected serious, or suspected minor injury. Examples include
momentary loss of consciousness, claim of injury, limping, or complaint
of pain or nausea. Possible injuries are those which are reported by the
person or are indicated by his/her behavior, but no wounds or injuries
are readily evident.

� O-No Injury (property damage only): No apparent injury is a situation
where there is no reason to believe that the person received any bodily
harm from the motor vehicle crash. There is no physical evidence of
injury and the person does not report any change in normal function.

The severity of each crash was defined based on the most severely
injured crash-involved person (almost always the bicyclist). Of the 4,875
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total bicyclist-involved crashes included in the analysis, 281 (5.8%) were
no-injury crashes, 1,570 (32.2%) were C-level injury crashes, 2,354 (48.3%)
were B-level injury crashes, 589 (12.1%) were A-level injury crashes, and 81
(1.7%) were fatal-injury crashes.
These bicycle crash data and macro-level metrics of socioeconomic con-

text and built environment were summarized to three systems of hexagons
with one-half-, one-, and two-mile edge-to-edge diameters that were cast
across the study area. Socioeconomic context metrics were calculated for
each hexagon using Census tract data from the 2015–2019 American
Community Survey’s five-year estimates and an area-based apportionment
process. These macro-level measures describing various attributes of the
residents in each hexagon, including person-level characteristics about sex,
age, education, race/ethnicity, and household attributes related to income,
tenure, and vehicle ownership. Additional measures about the share of resi-
dents in a hexagon employed in low-, mid-, or high-wage occupations were
obtained by using the 2018 Longitudinal Employer-Household Dynamics
data set.
Common built environment measures of population and employment dens-

ity, which may also serve as proxy variables for exposure, were also produced
for each hexagon using the two aforementioned data sets, as were density
measures of activity (sum of persons and jobs) and workplaces in low-, mid-,
or high-wage categories and the land use mix measure of jobs-population
ratio. A set of street network and design characteristics were computed for
every hexagon using OpenStreetMap (OSM) data. Intersection density, beta
index, and connected node ratio (Gehrke & Welch, 2019) indicate an area’s
overall street network connectivity and were created using information on
street nodes and links, whereas the percentage of roads in a hexagon catego-
rized as primary, secondary, tertiary, and residential was calculated using the
OSM highway tag. In the absence of bicyclist trip data, the sum of these street
network lengths was calculated as another proxy measure of exposure because
each of these facilities could be used by a potential bicyclist. To help identify
any association between bicycle crash frequency and bicycling infrastructure,
the percentage of bike facilities in a hexagon defined as having either a low or
high level of traffic stress by People for Bikes (2021) Bicycle Network Analysis
method was also measured. Finally, the percent of a hexagon’s area within a
one-half-mile buffer of a Valley Metro light rail transit station was calculated
using OSM data.

2.3. Analytic approach

The count of total bicycle crashes and fatal or serious injury-related events,
as well as the socioeconomic context and built environment characteristics,
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which were measured at three hexagonal spatial extents, were analyzed
by estimating three aspatial negative binomial (NB) models. NB model
specifications were chosen to assess the macro-level factors associated
with total and KA-only (K-Injury and A-Injury) bicycle crash frequency
in the Phoenix metro region, provided the nonnegative integer and likely
over-dispersion nature of these two dependent variables. The relaxation
of the equi-dispersion assumption in a Poisson count model that indi-
cates equality in the conditional mean and variance functions is a major
advantage of the NB model, which will default to the former model
structure if over-dispersion is not present. The structure for this first set
of NB models is presented as:

ki ¼ exp bxi þ eið Þ, (1)

where, xi is a set of various socioeconomic and built environment predic-
tors operationalized at hexagon zone i and ei is a Gamma-distributed error
term with a mean equal to one and a variance of a2: This error term per-
mits the variance to differ from the conditional mean:

var yi½ � ¼ E yi½ � þ aE yi½ �2 (2)

When analyzing crash count data aggregated to any macro-level spatial
unit, unobserved spatial correlations that could bias the model results may
appear. A commonly accepted approach to assess whether spatial autocor-
relation exists in the data set is to estimate the global Moran’s I statistic
(Anselin, 2010):

I ¼
X

i

X
j
wijzi � zj=S0

X

i

z2i =n
, (3)

where, wij represents the elements of a spatial weight matrix, S0 ¼
P

i

P
jwij

is the sum of the weights, and n is the number of hexagons (observations).
This formulation shows Moran’s I to be a cross-product statistic between a
variable and its spatial lag, with the variable expressed in terms of devia-
tions from the mean. In testing a null hypothesis that spatial randomness
exists, a positive spatial autocorrelation was found to be present within the
two dependent variables: count of total bicycle-related crashes (I¼ 0.574,
p< 0.001) and count of bicycle-related crashes resulting in a fatality or ser-
ious injury (I¼ 0.499, p< 0.001). A significant finding for each outcome
indicating this unobserved correlation should be accounted for with a spa-
tially lagged extension of the above NB model specifications. Additional
examination using likelihood ratio tests of the aspatial NB models and their
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complementary specifications with the addition of spatially lagged terms
supported the estimation of a spatial Durbin modeling approach.
Spatial Durbin models (SDM), which specify a spatially lagged outcome

and spatially lagged independent variables, produce unbiased coefficient
estimates by considering the spatial dependence existing in the endogenous
and exogenous relationships of the hexagons and their neighboring units
(LeSage & Pace, 2009). The three SDMs (one for each spatial extent) in
this study takes the following general structure:

y ¼ qWy þ bþ HWxi þ aln þ ei,

where, q is the spatial autocorrelation coefficient, W is the spatial weight
matrix, xi is the socioeconomic and built environment predictors of hexa-
gon i, and ln represents an n� 1 vector of ones. The coefficient estimates
are denoted by a, b, and H, with ei as the error term. Aside from the spa-
tial lag of the outcome variable (Wy), the SDM also presents spatially
lagged independent variables (Wxi) that adopted the queen-contiguous spa-
tial weight matrix in which any immediately neighboring hexagon was
given a value of one.
The result of this analytic approach was the initial estimation of two sets

of aspatial NB models, followed by the estimation of two sets of SDMs. NB
models were specified using a backward elimination process, where all pre-
dictors in the final specification were marginally significant (p< 0.10),
while the SDMs of total and KA-only crash frequency contains the spatial
lag of the modeled crash outcome and the spatial lag terms for each mar-
ginally significant predictor in the aspatial NB model specification.

3. Results

3.1. Descriptive overview of bicycle crashes and spatial factors

Figure 1 provides a visualization of all reported bicyclist-involved crashes
in the Phoenix metro region from 2015 to 2019 at the one-mile hexagon
extent. Examining this map shows a concentration of bicycle-vehicle
crashes has occurred in midtown Phoenix, as perhaps expected given its
clustering of activity centers, but that some measure of bicyclist-involved
crashes can be found across the study area. Other clusters of hexagons with
at least 10 bicycle-vehicle crashes per year over the study period are located
in Mesa and Tempe. Akin to Phoenix, the pattern of crashes for Mesa is
likely related to the population of the municipality, its larger aggregate pool
of prospective bicyclists, and potentially unsafe bicycling conditions given
that the community’s bicycling mode share is minimal. However, in
Tempe, where the bicycling mode share is relatively high compared to
other places in the region, a hexagon exists near Arizona State University
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with the highest frequency of bicyclist-involved crashes (over 30 bicycle-
vehicle crashes per year). This finding suggests the need for improved bike
infrastructure and safer bicycling conditions, as other circumstances seem
to support the adoption of bicycling for travel in the area.
As for those bicycle-vehicle crashes with a more severe health outcome,

Figure 2 shows the spatial pattern of bicyclist-involved crashes within the
region—aggregated to a one-mile hexagon zonal system—that resulted in a
fatality or serious injury over the five-year study period. The overall spatial
distribution of these events reveals that most hexagons do not have a
recorded bicycle-vehicle crash with a K- or A-level injury, but that zones
with a higher count of this more severe crash outcome are similarly found
in Phoenix, Mesa, and Tempe. Of note, most hexagons with a greater fre-
quency of crashes with a fatal or serious injury outcome are also the zones
with a higher count of total bicycle-vehicle crashes, with some exceptions.
Table 1 further describes these two bicycle-vehicle crash outcomes as

well as the socioeconomic context and built environment variables tested in
the aspatial and spatial models. On average, 1.82 bicycle-vehicle crashes
were observed per one-mile hexagon in the Phoenix metro region from
2015–2019, with a mean of 0.25 K- or A-level injuries occurring in this
zonal geography. The average count of total bicycle-vehicle crashes ranges
from 0.47 at the one-half-mile extent to 5.47 crashes at the two-mile spatial

Figure 1. Bicyclist-involved crashes with motorists in the Phoenix metro region (2015–2019) at
one-mile hexagons.
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extent, while more severe bicyclist-involved crash totals range from 0.06
when averaged at a one-half-mile extent to 1.21 crashes at the largest spa-
tial extent. As for regional bike infrastructure, the share of facilities in most
hexagons of any spatial extent were classified as low stress, suggesting that
an opportunity exists for growth in overall bicycle mode share under cur-
rent conditions; however, with about one quarter of bike facilities in each
spatial extent classified as high stress, the bike network in most places is
likely to have significant safety gaps.

3.2. Spatial factors associated with total bicycle crashes

Analyzing the socioeconomic context and built environment of one-half-,
one-, and two-mile hexagons across the Phoenix metro region, Table 2
shows the estimation results for three NB models of total bicycle crash fre-
quency. In terms of macro-level socioeconomic characteristics, an increase
in the share of older adults in a hexagon was associated with a decrease in
observed bicycle crashes, highlighting that bicyclist exposure is likely lowest
in these communities. In turn, an increase in the percentage of residents
identified as White, adults with an advanced college degree, and those
households reporting an annual income below $75,000 in any of the hexa-
gon spatial extents was associated with a higher frequency of bicyclist-

Figure 2. Bicyclist-involved crashes with motorists that resulted in a death or serious injury in
the Phoenix metro region (2015–2019) at one-mile hexagons.
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involved crashes. Although these are not person-level characteristics,
together, the positive relationships underscore the possibility that individu-
als who bicycle because of the mode’s lower relative economic costs or life-
style preferences may be more susceptible to crash involvement. Regarding

Table 1. Descriptive statistics for hexagon-level dependent and independent variables.

Hexagon Diameter:
One-half mile One mile Two miles

Variable Mean SD Mean SD Mean SD

Bicyclist-Related Crash Frequency
Count of total bicycle crashes 0.47 1.43 1.82 4.03 5.47 10.22
Count of fatal (K) or serious injury (A) crashes 0.06 0.29 0.25 0.66 1.21 2.09
Socioeconomic Context
Sex: Male 0.49 0.07 0.49 0.05 0.49 0.02
Sex: Female 0.50 0.07 0.50 0.05 0.51 0.02
Age: 18-24 years old 0.20 0.11 0.21 0.10 0.23 0.08
Age: 25-34 years old 0.21 0.12 0.21 0.10 0.21 0.10
Age: 35-44 years old 0.13 0.10 0.12 0.04 0.13 0.04
Age: 45-64 years old 0.27 0.11 0.26 0.07 0.26 0.06
Age: 65 years old or more 0.17 0.16 0.18 0.05 0.18 0.15
Education: High school or less 0.61 0.21 0.62 0.19 0.61 0.17
Education: Bachelors or some college 0.23 0.11 0.23 0.11 0.24 0.10
Education: Masters of PhD 0.14 0.09 0.14 0.09 0.15 0.08
Race/Ethnicity: Asian 0.04 0.04 0.04 0.04 0.04 0.04
Race/Ethnicity: Black/African American 0.04 0.05 0.04 0.05 0.05 0.04
Race/Ethnicity: Hispanic/Latinx 0.17 0.19 0.17 0.16 0.17 0.15
Race/Ethnicity: White, Non-Hispanic 0.62 0.27 0.62 0.26 0.63 0.24
Immigrant Status: Population foreign-born 0.12 0.08 0.12 0.07 0.13 0.06
Household Income: Less than $35,000 0.20 0.15 0.21 0.13 0.21 0.12
Household Income: $35,000–$74,999 0.27 0.12 0.28 0.10 0.28 0.09
Household Income: $75,000–$149,999 0.29 0.12 0.30 0.10 0.31 0.08
Household Income: $150,000 or more 0.19 0.16 0.21 0.17 0.20 0.14
Work Status: Unemployed 0.02 0.02 0.02 0.02 0.02 0.01
Employment: Share of low-wage workers 0.18 0.05 0.19 0.03 0.19 0.03
Employment: Share of mid-wage workers 0.30 0.13 0.30 0.10 0.31 0.10
Employment: Share of high-wage workers 0.50 0.15 0.50 0.12 0.50 0.11
Tenure: Homeowners 0.69 0.24 0.70 0.21 0.70 0.19
Tenure: Renters 0.28 0.21 0.29 0.20 0.30 0.19
Car Ownership: 0 0.02 0.03 0.02 0.03 0.02 0.02
Car Ownership: 1 0.18 0.12 0.19 0.11 0.19 0.09
Car Ownership: 2 0.43 0.13 0.44 0.11 0.45 0.07
Car Ownership: 3 or more 0.35 0.16 0.35 0.13 0.35 0.10
Built Environment
Persons per acre 4.24 4.08 4.15 3.88 4.29 2.12
Jobs per acre 2.09 4.82 2.04 4.40 2.12 3.60
Persons and jobs per acre 6.34 6.85 6.20 6.50 6.41 5.78
Liquor stores 0.04 0.26 0.17 0.61 3.95 4.59
Share of low-wage workplaces 0.22 0.11 0.22 0.10 0.23 0.11
Share of mid-wage workplaces 0.35 0.12 0.35 0.10 0.37 0.10
Share of high-wage workplaces 0.38 0.16 0.40 0.15 0.40 0.15
Intersections per acre 0.76 0.66 0.12 0.09 0.15 0.09
Connected node ratio 0.81 0.34 0.89 0.25 0.78 0.15
Beta index 1.02 0.44 1.04 0.29 0.10 0.15
Share of park space 0.03 0.12 0.03 0.10 0.08 0.10
Share of primary roads 0.09 0.23 0.11 0.21 0.11 0.16
Share of secondary roads 0.13 0.23 0.13 0.18 0.11 0.10
Share of tertiary roads 0.10 0.19 0.11 0.15 0.10 0.09
Share of residential roads 0.52 0.37 0.57 0.31 0.69 0.20
Street network length 1.62 1.20 6.35 4.14 32.61 16.01
Share of BNA low-stress bike facilities 0.61 0.37 0.65 0.31 0.72 0.17
Share of BNA high-stress bike facilities 0.24 0.29 0.26 0.25 0.28 0.17
Half-mile light rail transit shed 0.02 0.14 0.02 0.13 0.02 0.10
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local land uses, areas with more liquor stores were found to be positively
associated with total bicycle crash frequency; a result underlining the pro-
spect that neighborhoods with an increased presence of impaired travelers
may be linked to more observed bicyclist-involved crashes. Regardless of
hexagon size, zones with a higher connected node ratio and share of sec-
ondary roads were positively associated with bicyclist-involved crash fre-
quency. For the former environmental factor, this finding may indicate that
areas with a traditional grid street pattern, where bicyclists may encounter
more potential conflict points with motorists, produce a higher count of
bicycle-related crashes, whereas the relationship between secondary roads
and crash frequency suggests increased motorist speeds may factor into
bicyclist safety. These described socioeconomic and built environment pre-
dictors of total bicyclist crash frequency were statistically significant after
controlling for the three exposure measures of population density, employ-
ment density, and street network length, each which had a positive and sig-
nificant relationship to the modeled outcome that is consistent with
previous research (Amoh-Gyimah et al., 2016; Cai et al., 2016; Chen et al.,
2018; Ding et al., 2020).
An extension of this set of aspatial NB models of total bicycle crashes is

the estimation of SDMs of total vehicle-bicycle crash frequency, with an
identical base specification and the addition of spatially lagged variables for
the count of bicyclist-involved crashes and each of the previously described

Table 2. Negative binomial model estimates of total bicyclist-involved crashes.

Hexagon Diameter:
One-half mile One mile Two miles

Variable b SE b SE b SE

Intercept –8.92 0.55 –8.15 0.85 –3.84 0.61
Exposure Control Measures
Persons per acre 0.14 0.01 0.13 0.01 0.08 0.02
Jobs per acre 0.03 <0.01 0.05 0.01 0.04 0.01
Street network length 0.47 0.03 0.15 0.01 0.03 <0.01
Socioeconomic Context
Age: 65 years or older –1.89 0.26 –2.01 0.31 –1.94 0.44
Education: Master’s or PhD 2.15 0.47 2.25 0.61 1.96 0.76
Race/Ethnicity: White, Non-Hispanic 1.04 0.17 0.94 0.21 0.58 0.25
Household Income: Less than $35,000 3.66 0.26 3.81 0.33 2.60 0.46
Household Income: $35,000–$74,999 1.98 0.34 2.50 0.45 2.41 0.66
Work Status: Unemployed –4.99 2.35
Built Environment
Liquor stores 0.31 0.06 0.12 0.03 0.08 0.01
Share of low-wage workplaces 0.69 0.28 0.75 0.37
Share of mid-wage workplaces 1.28 0.41
Connected node ratio 3.96 0.50 3.76 0.80 1.50 0.46
Share of park space –0.65 0.30 –0.86 0.43 1.57 0.38
Share of secondary roads 1.57 0.11 1.13 0.20 1.07 0.38
Share of residential roads –0.92 0.13 –0.82 0.19
Share of BNA low-stress bike facilities 0.59 0.16
Model summary
Number of hexagons 10,409 2,673 553
Log-likelihood –6,771.08 –3,442.59 –1,199.50
Theta (SE) 0.73 (0.04) 1.55 (0.10) 5.57 (0.72)

Note: Estimates of significant (p< 0.05) independent variables only shown.
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predictors. Table 3 shows the estimation results of the full SDM specifica-
tions for total bicycle crash frequency at the three different hexagon spatial
extents. In these full SDM specifications, the exposure control measure of
persons per acre at the two smaller zonal systems and jobs per acre at the
one-mile hexagon zonal system were no longer statistically significant,
while street network length remained positively associated with the out-
come variable measured at all three spatial extents. The percentage of resi-
dents who identified as White and adults with higher education attainment
no longer significantly predicted bicyclist crash frequency at any spatial
extent in the SDMs, while the macro-level measures of low- and mid-wage
workplaces were also no longer significantly associated with total bicyclist-
involved crashes. The next discussion describes the marginal effects
(dy=dx) of the statistically significant predictors in the SDM of total
vehicle-bicycle crash frequency at a one-mile spatial extent; interpreted as
the expected change in bicyclist-involved crashes per a one-unit change in
the explanatory variable, all else being equal.

Table 3. Spatial Durbin model estimates of total bicyclist-involved crashes.

Hexagon Diameter:
One-half mile One mile Two miles

Variable b dy/dx b dy/dx b dy/dx

Intercept –9.19 –7.29 –1.63
Spatial Lag: Count of total crashes 0.29 0.02 0.06 0.03 0.02 0.08
Exposure Control Measures
Persons per acre 0.05 0.18
Spatial Lag 0.14 0.01 0.14 0.07

Jobs per acre –0.01 –0.01 0.02 0.07
Spatial Lag 0.05 0.01 0.04 0.02

Street network length 0.30 0.03 0.11 0.06 0.03 0.11
Spatial Lag

Socioeconomic Context
Age: 65 years old or more –1.13 –0.60 –1.39 –4.71
Spatial Lag

Household Income: Less than $35,000 1.12 0.60 1.39 4.70
Spatial Lag

Household Income: $35,000-$74,999 1.46 0.78
Spatial Lag

Built Environment
Liquor stores 0.25 0.02 0.09 0.05 0.07 0.24
Spatial Lag

Connected node ratio 3.38 0.29 2.73 1.45 1.14 3.88
Spatial Lag 3.16 0.27 2.30 1.23

Share of park space –0.91 –0.08 –2.20 –1.17 1.51 5.12
Spatial Lag 3.39 1.80

Share of secondary roads 1.60 0.14 0.93 0.50 0.94 3.18
Spatial Lag –1.65 –0.14 2.38 8.05

Share of residential roads –0.53 –0.05 –0.70 –0.37
Spatial Lag –0.50 –0.04 0.70 0.37

Share of BNA low-stress bike facilities –1.17 –0.10
Spatial Lag 2.01 0.17

Model summary
Number of hexagons 10,409 2,673 553
Log-likelihood –6,566.87 –3,361.57 –1,231.14
Theta (SE) 0.97 (0.05) 1.97 (0.14) 5.95 (0.78)

Note: Estimates of significant (p< 0.05) independent variables only shown.
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Focusing on significant socioeconomic context predictors, which were
also significant at the two-mile spatial extent, a one-percent increase in the
percentage of older adults within a Phoenix metro region one-mile hexagon
was associated with an average expected decrease of 1.13 bicyclist-involved
crashes, while a one-percent increase in the percentage of households in
the lowest annual income cohort was related to an average increase of 1.12
bicyclist-involved crashes. The share of households with a reported annual
income between $35,000 and $74,999 was only significantly associated with
bicyclist-involved crashes at the one-mile spatial extent, with a one-percent
increase in this determinant related to an average increase of 1.46 bicyclist-
involved crashes. A handful of built environment predictors in the base NB
models were also found to be significant in the SDMs, with three measures
significant at all three hexagon geographies (liquor stores, connected node
ratio, and share of secondary roads). Connected node ratio was the only
one of these built environment measures to have a spatially lagged variable
that was significantly predictive of the total crash outcome at a one-mile
spatial extent, revealing that the presence of a grid street pattern (character-
istic of more urban areas) has a spillover effect on bicyclist-involved crash
counts. Turning to the spatially lagged dependent variable, which revealed
significant spillover effects, an increase of 100 total bicycle crashes in any
study area hexagon was associated with an expected average increase of
6.00 total bicyclist-involved crashes in the immediately neighboring one-
mile hexagons.

3.3. Spatial factors associated with fatal and serious injury bicycle crashes

The estimates of the NB models assessing the socioeconomic context and
built environment predictors of the count of bicyclist-related crashes result-
ing in a fatal or serious injury per one-half-, one-, and two-mile hexagons
are shown in Table 4. Similar to the previous NB models of total crash fre-
quency, an increased share of adults older than 65 years of age was found
to be negatively associated with an increase in K- and A-level injuries over
the five-year study period, while an increase of households within the low-
est annual income cohort was found to be positively associated with an
increase in K- and A-level injuries. Yet, unlike in the previous NB crash
model results, an increased share of unemployed working-age adults per
hexagon was found to be related to a decrease in bicyclist-related crashes
of the two highest severity classifications. While inconclusive from any
macro-level assessment, this relationship could be a consequence of
employed adults in the study area being less likely to commute via bicycle.
Similar to the base NB model specification for total bicyclist-related
crashes, the three exposure measures in these base NB models of bicycle
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crashes resulting in a fatality or severe injury were statistically significant
and positive in association at all spatial extents. While no built environ-
ment metric was significant in each NB model, an increase in the con-
nected node ratio was found to have a significant, positive link to the
count of K- and A-level injuries observed in one-half- and one-mile
hexagons.
Table 5 provides the results for three SDMs of bicyclist-involved crashes

resulting in a fatality or serious injury measured at the three spatial extents.
Interestingly, the spatially lagged dependent variable in each of the full
SDM specifications is positive and significant, indicating that this subset of
more serious bicyclist-related injuries, which are rare in nature, are also
spatially clustered. However, none of the other predictors specified in these
SDMs are significant at each of the three extents. In terms of socioeco-
nomic context, the percentage of adults older than 65 years of age was the
only significant variable in the one-half-mile hexagon model, with a one-
percent increase in the share of older adults associated with a decrease of
3.62 bicyclist-related crashes classified by one of the two highest severity
levels. Measured at a one-mile spatial extent, the percentage of households
reporting an annual income between $35,000 and $74,999 was positively
associated with the more severe category of bicyclist-related crashes, with a
one-percent increase of households in this income cohort associated with a
3.21 increase in vehicle-bicycle crashes with a fatality or severe injury. In
terms of the built environment, an increase in the average connected node
ratio of a one-half or one-mile hexagon was positively associated with the
reported frequency of bicyclist-related crashes classified by the two highest

Table 4. Negative binomial model estimates of bicyclist-involved crashes with fatality or ser-
ious injury.

Hexagon Diameter:
One-half mile One mile Two miles

Variable b SE b SE b SE

Intercept –10.21 1.22 –6.69 1.27 –2.41 0.56
Exposure Control Measures
Persons per acre 0.10 0.01 0.10 0.01 0.12 0.02
Jobs per acre 0.03 <0.01 0.05 0.01 0.05 0.01
Street network length 0.21 0.05 0.07 0.02 0.02 0.01
Socioeconomic Context
Age: 65 years old or more –1.79 0.42 –1.78 0.43 –1.65 0.55
Household Income: Less than $35,000 2.67 0.34 2.89 0.40 3.37 0.59
Household Income: $35,000-$74,999 1.74 0.61
Work Status: Unemployed –7.08 3.43 –15.64 4.12 –13.18 6.65
Built Environment
Connected node ratio 6.13 1.25 3.62 1.31
Share of park space –2.14 0.96
Model summary
Number of hexagons 10,409 2,673 553
Log-likelihood –2,095.81 –1,336.92 –634.97
Theta (SE) 0.68 (0.11) 1.40 (0.24) 3.76 (0.92)

Note: Estimates of significant (p< 0.05) independent variables only shown.
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severity levels, while an increase of park space within a one-mile hexagon
was associated with a decrease in bicyclist-related crashes with a fatality or
severe injury. The spatially lagged variables of these latter two predictors
when measured at a one-mile hexagon were positive and significant, reveal-
ing that an increase in the presence of a more traditional street network or
park space in neighboring hexagons may relate to an increase in bicyclist-
related crashes with a K- or A-level injury.

4. Conclusion

This study presented a spatial analysis of factors associated with bicycle-
vehicle crash frequencies (total and severe/fatal injury crashes) in the
Phoenix metro region. Five years of crash data were analyzed along with
several macro-level measures of exposure, roadway network characteristics,
sociodemographic and economic characteristics, and built environment fea-
tures. These data were summarized at three uniform hexagon spatial
extents (as opposed to single zone systems of TAZs, census block groups,
or statistical area levels considered in prior research). This study provides
new insights into the relationship between a robust set of macro-level char-
acteristics and bicycle-vehicle crashes, which may be useful to planners,
engineers, and researchers seeking to implement strategies and counter-
measures aimed at improving bicyclist safety. Findings from traditional NB

Table 5. Spatial Durbin model estimates of bicyclist-involved crashes with fatality or serious
injury.

Hexagon Diameter:
One-half mile One mile Two miles

Variable b dy/dx b dy/dx b dy/dx

Intercept –11.35 –8.60 –1.92
Spatial Lag: Count of KA crashes 0.99 0.01 0.48 0.05 0.20 0.13
Exposure Control Measures
Persons per acre 0.15 0.10
Spatial Lag 0.13 0.01 0.17 0.02

Jobs per acre 0.05 0.03
Spatial Lag 0.06 0.01 0.05 0.01

Street network length 0.14 0.01 0.01 0.01
Spatial Lag

Socioeconomic Context
Age: 65 years old or more –3.62 –0.05
Spatial Lag 2.89 0.04

Household Income: $35,000–$74,999 3.21 0.32
Spatial Lag –3.23 –0.32

Built Environment
Connected node ratio 7.20 0.10 3.74 0.37
Spatial Lag 2.17 0.21

Share of park space –3.77 –0.37
Spatial Lag 3.07 0.30

Model summary
Number of hexagons 10,409 2,673 553
Log-likelihood –2,096.59 –1,305.52 –639.24
Theta (SE) 0.68 (0.11) 2.11 (0.48) 3.71 (0.94)

Note: Estimates of significant (p< 0.05) independent variables only shown.
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model estimates, which failed to account for spatial spillover effects, were
advanced by estimating spatial Durbin models that tested for the signifi-
cance of spatial-lagged predictors of the dependent and independent varia-
bles that were solely explored in the aspatial NB models.
With respect to notable findings of this study, both total crashes and

crashes resulting in a K- or A-level injury were more likely to occur in
zones with higher activity densities (population and employment), which
likely reflects greater opportunity for individuals to travel on a bicycle, and
a more traditional grid street network that without proper treatments may
introduce more conflict points between bicyclists and motorists (i.e.,
increased exposure). Spatial spillover effects were found for both the out-
come of total bicycle-vehicle crashes as well as the count of severe/fatal
injury bicycle-vehicle crashes, highlighting the need for a more holistic
approach to addressing missing links in the region’s network of low-stress
facilities. Zones with a higher share of secondary roads were also more
likely to have increased bicyclist-related crash frequencies, further showing
the importance of creating more bike-friendly facilities that separate bicy-
clists from faster-moving vehicles. Finally, the increased presence of liquor
stores within a hexagon was associated with total vehicle-bicycle crash fre-
quencies, which suggests a need for better protection for bicyclists in these
areas via infrastructure treatments and perhaps education and/or enforce-
ment strategies aimed at motorists.
There are some limitations to this study, most of which can also be con-

sidered directions for future research. First, this study utilized a police-
reported crash data set, and it is possible some bicyclist-involved crashes
were not reported, which is a common limitation when analyzing almost
any crash data set. Second, though a robust set of socioeconomic context
and built environment predictors were examined, a relatively small set of
these macro-level predictors demonstrated significant spillover effects on
bicyclist-involved crashes, pointing to the need to explore other environ-
mental predictors or zonal systems. Additionally, the study’s analysis of
macro-level factors of socioeconomic context somewhat assumes that bicyc-
list-involved crashes are experienced by the residents of a particular zone,
which may not be the case for longer bicycle trips or those near an out-of-
home location, and also suffers from a contextual fallacy in which it is
assumed that the zonal characteristics are reflective of the individual
involved in the crash event. Future studies could also consider a more
bicyclist-specific exposure measure (e.g., bicyclist volumes); while not avail-
able for this study, agencies are developing more robust bicycle count pro-
grams and these data may be more readily available for future studies.
Finally, future work could include incident-level analyses of bicyclist inju-
ries that account for person- and event-specific attributes as well as
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important macro-level factors to provide a more complete picture of how
these spatial attributes relate to vehicle-bicycle crashes and injury
outcomes.
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