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Planners and economists generally accept that housing market values increase with proximity to transportation
facilities through the provision of improved access to activity locations. While the market benefits of rail station
access are well-documented, inconsistent and insufficient methods have led to limited agreement on the true
value associated with this locational amenity. Far fewer hedonic price studies have assessed the influence of
bike facility access on housing sales prices, and those that have generally analyze cross-sectional data. In this
study, we estimated a spatial hedonic model using a bootstrapped pseudo panel to determine the joint impact
of network proximity to bike lanes and off-street multi-use paths, as well as light rail and streetcar stations, on
housing sales in Portland, Oregon, from 2002 to 2013. Our findings revealed housing sales prices increased as
network distance to the nearest light rail transit and streetcar station decreased. Likewise, owner-occupied
single-family and multifamily housing sales rose in conjunction with reduced street network access to regional
multi-use bike paths; however, improved proximity to on-street bike lanes negatively affected housing values.
In sum, we believe these findings may help to inform non-automotive transportation infrastructure financing
mechanisms that rely on rising property values.
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1. Introduction

A commonly stated goal amongst regional transportation planners
and decision makers is the diversification of the transportation system.
Such diversification often includes the development of infrastructure
supportive to both motorized and non-motorized travel modes.
Inevitably, any conversation around infrastructure expansion turns im-
mediately to project costs and benefits. While the direct mobility and
monetary costs and benefits of these investments are easily discernable,
the potential indirect and non-mobility benefits of a diverse transporta-
tion system often aremade less apparent to decisionmakers. This set of
non-mobility benefits relates to public health and safety as well as to
environmental quality. A spate of still more elusive indirect monetary
gains is believed to exist, and past hedonic studies have attempted to
calculate them.

Urban planners and economists are interested in how the real estate
market recognizes transportation improvements in the form of
enhanced accessibility via non-automotive facilities. These enhance-
ments often lead to increased housing market values (Armstrong and
eering and Computer Science,
751, Portland, OR 97207, USA.
Rodriguez, 2006) by expanding themodal options available to residents
for reaching workplaces and service facilities (Dubé et al., 2013).
Despite this stated connection, few studies have linked the impact of
bike facility proximity to changes in the housing market. By contrast,
research into the impact of rail transit access on housing values has
been commonly studied; however, findings from these studies have
varied because of ranging methodologies and motivations (Debrezion
et al., 2007).

A clearer understanding of the monetary contributions of transpor-
tation infrastructure expansions could assist researchers and practi-
tioners interested in predicting the indirect effects of improved
locational quality on the housingmarket (Can, 1990). Consequently, de-
cision makers should be better informed when using limited resources
to implement proposed visions. In the case of Portland, Oregon, the
city adopted a bike plan for 2030 seeking to expand its pro-bike legacy
by buildingmore bike infrastructure to realize a number of stated goals,
including the ability of residents to meet their daily transportation
needs more efficiently (PBOT, 2010). Portland also welcomed an
expansion of its streetcar network in 2012 and opened its fifth light-
rail line (MAX Orange route) in the regional system in September
2015. Other American cities have also invested in light rail, streetcar,
and bicycle infrastructure expansion with the intent of efficiently
shaping the urban fabric and realizing the myriad benefits heralded by
smart growth advocates.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtrangeo.2016.06.016&domain=pdf
http://dx.doi.org/10.1016/j.jtrangeo.2016.06.016
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http://dx.doi.org/10.1016/j.jtrangeo.2016.06.016
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However, to achieve the identified goal of diversification in the
transportation network, these cities must show that favorable housing
market conditions arise from an extension of their bike and public tran-
sit networks (Knaap et al., 2001). To address this identified need, our
study examines themonetary benefits of transportation system diversi-
fication by evaluating the long-term influence of improved bike and rail
transit facility access from 2002 to 2013 on residential property sales
prices in Portland, Oregon.Ourworkinghypothesis is that increaseddis-
tance to the nearest bike facility or public transit station has a negative
influence on housing sales price.

2. Literature review

The seminal research of Lancaster (1966) and Rosen (1974) set the
theoretical foundation formodern hedonic studies of residentialmarket
values. The former contribution to microeconomic theory introduced
several assumptions, including that: (a) a single good such as the resi-
dence is composed of various characteristics reflecting its utility to the
consumer, (b) the characteristics comprising this good may or may
not be shared by more than one good, and (c) the overall set of goods
may possess characteristics different from those pertaining to the
goods separately. The latter study contributed to the conceptual frame-
work of non-linear hedonic modeling techniques by addressing the
complication of assuming a constant linear relationship between the
price of a good and the price of its individual characteristics.

The representation of this good as a cohesive bundle of individual
characteristics of a residential property has taken an assortment of func-
tional forms. Sirmans et al. (2005) identified eight categories reflecting
the bundling of different housing-related characteristics, including
the construction and structure (e.g., square feet), internal features
(e.g., full baths), and location or neighborhood (e.g., proximity to a
metro station) associated with a house. Yet most studies focused on
the potential impact of improved transportation facility access on resi-
dential property values have opted for more sparing functional forms.
Mohammad et al. (2013) proposed three classes of contextual factors
(internal, external, and economic) that affect property values, in
which transport schemes (e.g., accessibility, distance) reflected a sub-
group of external factors. In studying the effect that light-rail station
proximity has on single-family home values in Portland, Chen et al.
(1998) acknowledged four relevant categories describing the physical
(e.g., lot size), neighborhood (e.g., median household income), location-
al (e.g., distance to central business district), and fiscal (e.g., property
taxes) characteristics of a house.

In addition to these housing-specific characteristics, timing also has
a significant influence on the realized impact of transportation improve-
ments on property values. Knaap et al. (2001) found property transac-
tions within one mile of a light-rail station in Portland sold for 9%
more after the station locations were announced, with an even greater
36% premium if the property was located within one-half mile of a
new station. Adopting amore refined approach to represent this tempo-
ral component, Golub et al. (2012) examined four distinct planning and
implementation phases for Phoenix's light-rail line and found that
property values increased over each successive phase. Welch (2010)
investigated the impact of Atlanta's heavy rail system on property
values for 35 years following the initial year of system operation and
found an increase in property values with station proximity over time.
This link between improved access to public transit stations and resi-
dential property sales has been well-documented in the literature
(Hess and Almeida, 2007; Rodriguez and Mojica, 2009). Other hedonic
price studies have found that close proximity to transit stations
(Bowes and Ihlanfeldt, 2001) and transportation infrastructure (Seo
et al., 2014) can also reduce property values, a phenomenon resulting
from various nuisances (e.g., crime, air and noise pollution) associated
with spatial adjacency to these facilities.

Meanwhile, the use of hedonic price models to evaluate the poten-
tial impact of improved access to bike facilities on residential property
values has received far less attention. Lindsey et al. (2004) examined
housing sales price as a function of structural, tax and neighborhood,
and three trail access variables. Defining access as a residence located
within a one-half mile areal buffer, they estimated that housing sales
prices had a positive association with access to the most popular trail
in the Indianapolis greenway network, but no significant relationship
with access to other trails in the system. Asabere and Huffman (2009)
also used a log-linear model to estimate housing sales prices in San
Antonio, Texas, as a function of the structural and property characteris-
tics, as well as a set of amenity variables including the presence of a
neighborhood trail. This presence of a trail in the neighborhood of the
property transaction was related significantly and positively to housing
sales prices, and interaction of this binary variablewith thepresence of a
greenway in the neighborhood had a marginally positive relationship
with housing sales prices. Recently, Parent and vom Hofe (2013) exam-
ined the link between assessed market value and network distance of a
property to the nearest trailhead of an oft-traveled multi-use trail in
Cincinnati, Ohio. Aside from the use of network distances, the study
advanced prior ordinary least-squares (OLS)modeling efforts by testing
three different spatial specifications. In all specifications, the network
distance to the nearest trailhead was negatively related to the assessed
market land value.

Krizek (2006) employed an OLS hedonic modeling approach to
examine the connection between housing sales prices in the Twin Cities
(Minneapolis-St. Paul, MN) and proximity to on-street bicycle facilities,
in addition to off-street trails. Arguing that suburban and urban
residents perceived the value of these bike facilities differently, Krizek
(2006) stated that housing market prices were composed of the struc-
tural and neighborhood attributes of the house as well as its environ-
mental location in the suburb or city. Study findings suggested a
negative association between housing sales prices and suburban
on-street bike lanes, but no clear indication concerning the directional
impact of on-street facilities on housing sales prices for urban locations.
Our study bolsters a sparse evidence base by using a non-parametric he-
donic price model to estimate the longitudinal influence of segmented
bike and public transit facilities on housing sales prices.

3. Methods

3.1. Panel construction

To examine the long-term influence of non-automotive infrastruc-
ture expansion on the Portland, Oregon, housing market, spatial infor-
mation was collected from the metropolitan area's comprehensive
Regional Land Information System (RLIS, 2015)) database. Foremost,
a history of residential property sales for the City of Portland, based on
annual updates between 2002 and 2013, was used to construct a spatial
panel. The panel of sales data was recorded at the parcel-level and
cleaned by limiting the longitudinal dataset to arms-length transactions
of only single-family and owner-occupiedmultifamily units with a non-
zero sales price. Further, properties with a building size of b300 and
over 8000 square feet were removed from the final dataset. This result-
ed in a total of 146,311 candidate sales records in the City of Portland for
the hedonic analysis. Sales datawere temporally grouped by transaction
year and spatially aggregated to a 300-meter grid cell system cast over
the city. In total, 4483 grid cells covered the citywide study area.

The RLIS database also provided transportation data layers denoting
the city's expansion of bike facilities and public transit stations over the
12-year study period. For this study, three bike facility types in which
cyclists are separated from automotive traffic were explored (Fig. 1).
From 2002 to 2013, the City of Portland increased bike-lane coverage
from 148 to 191 miles, from two to 33 miles in local multi-use path ex-
pansion, and from 67 to 75 miles in regional multi-use path growth.
Fig. 2 offers a map of the location of these bike lanes/paths in Portland
at the beginning and end of this timeframe. An expansion of the region's
light rail and streetcar network also occurred during the 12-year study



Fig. 1. Illustration of bike facility types used in analysis. Photos: S.R. Gehrke.
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period. As a result, the number of light-rail stations in Portland
increased from 30 in 2002 to 61 in 2013; moreover, the number of
streetcar stations in the city more than doubled from 32 to 74 across
the same period.Most station expansion during this timeframe resulted
from the opening of the Yellow Line in 2004, Green Line in 2009, and
Central Loop Line in 2012 (Fig. 2).

The network distance between the location of each residential
property sales transaction and nearest bike facility (bike lane, local
multi-use path, and regional multi-use path) and public transit
station (light rail and streetcar) at the time of sale was calculated
using ArcGIS Network Analyst. Beyond these transport scheme
measures, a set of additional external factors affecting residential
sales price was collected. Using block group-level socioeconomic
and demographic data from the 2000 and 2010 US Decennial Census,
Fig. 2. Bike facility and public transit station expansion in Portland, Oreg
as well as the 2005–09, 2006–10, 2007–11, and 2008–12 5-year
American Communities Survey (ACS), locational characteristics
were added to the full panel dataset. These socioeconomic data
enabled development of a unique annual profile for each individual
geographic unit of analysis. For those years of the timeframe not cap-
tured by the US Census or ACS data source, panel data were imputed
using a standard straight-line projection method. The RLIS provided
the requisite information to measure other external factors related
to the location (e.g., median income, household density) and sur-
rounding amenities (e.g., parks, land use entropy). The number of
bedrooms and bathrooms in each sold residence was provided by
an online real estate database (Trulia.com, 2015). More internal
factors (e.g., size, age) as well as the listed sales price were offered
by the RLIS. Table 1 lists variables included in the 12-year panel.
on from 2002 (left) to 2013 (right). Source: Created by the authors.



Table 1
Variables within spatial panel dataset.

Variable Description

Dependent
Sale price Total sale price of a unit within the grid

cell (inflation adjusted 2013 $US)
Independent
Internal

Age Age of housing unit at the time of sale
Bathrooms Sum of full (1) and half (0.5) bathrooms
Bedrooms Total number of bedrooms
Lot acres (ln) Number for acres for property sale,

in log form
Neighborhood

Household density Household density within the grid cell
Land use entropy Mean land use entropy (residential,

commercial, industrial)
Median income Median household income within the

grid cell (inflation adjusted 2013 $US)
Percent rented Percent of rented housing units within

the grid cell
Percent white Percent White households within the

grid cell
Distance

CBD distance Feet in network distance to central
business district

Bike lane distance Feet in network distance to nearest
bike lane

Local multi-use path distance Feet in network distance to nearest
local multi-use path

Regional multi-use path distance Feet in network distance to nearest
regional multi-use path

Light rail station distance Feet in network distance to nearest
MAX light rail station

Streetcar station distance Feet in network distance to nearest
streetcar Station

b1/8 mile from light rail track
(dummy)

1 = property located within 1/8 mile
of a light rail track

b1/8 mile from streetcar track
(dummy)

1 = property located within 1/8 mile
of a streetcar track

b1/8 mile from major road
(dummy)

1 = property located within 1/8 mile
of a major road

Between 1/8 and 1/4 mile from
light rail track (dummy)

1 = property located N1/8 mile
and b1/4 mile of a light rail track

Between 1/8 and 1/4 mile
streetcar track (dummy)

1 = property located N1/8 mile
and b1/4 mile of a streetcar track

Between 1/8 and 1/4 mile from
major road (dummy)

1 = property located N1/8 mile
and b1/4 mile of a major road

Temporal
Years light rail open Years between light rail station

opening and observed sale
Years streetcar open Years between streetcar station

opening and observed sale
Property sold in 2002 (dummy) 0 = observed sale occurred in the year 2002
Property sold in 2003 (dummy) 1 = observed sale occurred in the year 2003
Property sold in 2004 (dummy) 1 = observed sale occurred in the year 2004
Property sold in 2005 (dummy) 1 = observed sale occurred in the year 2005
Property sold in 2006 (dummy) 1 = observed sale occurred in the year 2006
Property sold in 2007 (dummy) 1 = observed sale occurred in the year 2007
Property sold in 2008 (dummy) 1 = observed sale occurred in the year 2008
Property sold in 2009 (dummy) 1 = observed sale occurred in the year 2009
Property sold in 2010 (dummy) 1 = observed sale occurred in the year 2010
Property sold in 2011 (dummy) 1 = observed sale occurred in the year 2011
Property sold in 2012 (dummy) 1 = observed sale occurred in the year 2012
Property sold in 2013 (dummy) 1 = observed sale occurred in the year 2013
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3.2. Analytic approach

While spatial panel modeling has been established in econometric
analyses, the approach has been rarely used in transportation planning
and geography studies. The limited application of themethodologymay
be attributed to implementation barriers related both to significant data
collection efforts and computational requirements. However, when
compared to cross-sectional data analyses, use of a spatial panel and
constituent analysis method enables the estimation of a more robust
hedonic price regression model with greater variation and less collin-
earity among specified variables (Elhorst, 2003). Moreover, estimation
of a hedonic price model with a spatial panel allows the specification
and testing of more complicated behavioral hypotheses than those
tested with conventional hedonic models (Hsiao et al., 1999).

Although an addition of temporal information marks a clear meth-
odological advantage to using a spatial panel modeling approach, two
problems related to the joint incorporation of a locational component
must be addressed going forward. First, spatial dependence, where an
event at one location may be influenced by the occurrence and magni-
tude of a similar event at a spatially proximate location, must be
addressed adequately to prevent spurious model results in the form of
spatial error. Second, model parameters may not be homogeneous
across spatial locations (Armstrong and Rodriguez, 2006; Elhorst,
2003). Merely adjusting for any temporal autocorrelation would not
adequately overcome these potentially confounding modeling errors.
Consequently, a spatiotemporal autocorrelation model specification
should be employed.

The spatial panel data model used in this hedonic study was a
random effects spatial panel model incorporating both spatial lag and
spatial error effects (Elhorst, 2003). Model estimation was performed
in the R statistical software program (R Core Team, 2014) using the
splm package (Millo and Piras, 2012). Eq. (1) shows the structural
form of the spatial panel model, which can be taken as a combination
of a panel and spatial regression model (Millo and Piras, 2012).

y ¼ λ IT �WNð Þyþ Xβ þ u ð1Þ

Here, y is anNT×1 vector of observations on the dependent variable,
X is a NT×k matrix of observations on the non-stochastic exogenous
variables, IT is an identity matrix of dimension T, WN is an N×N spatial
weights matrix with diagonal elements set to zero, λ represents the
corresponding spatial parameter, and u is a disturbance vector
representing the sum of the temporal autocorrelation (Eq. (2)) and
spatial autocorrelation (Eq. (3)) terms.

u ¼ ιT � INð Þμ þ ε ð2Þ

In Eq. (2), ιT is a T×1 all-ones vector and IN is anN×N identitymatrix
in which the product of the terms is multiplied by a vector of time-
invariant individual specific effects μ and then summed with ε the vec-
tor of spatial autocorrelation innovations. In Eq. (3), ρ(|ρ |b1) is a spatial
autoregressive parameter and WN is a spatial weights matrix.

ε ¼ ρ IT �WNð Þε þ v ð3Þ

In this study, the suite of random effects spatial panel models used a
maximum likelihood estimator and developed a spatial weights matrix
using the “rook contiguity” method. That is, for the purposes of con-
structing the spatial weight matrix, each neighboring grid cell was de-
fined as an adjacent cell with a shared side. Previous spatial panel
models commonly rely on multiple observations within an arbitrary
boundary that average observations for each panel time period to pro-
duce one value for each item located in the chosen spatial boundary.
However, this approach likely biases any parameter estimate by
allowing a single outlying observation to have a large influence in a
panel of averaged values. To avoid sample bias, a bootstrap approach
was adopted, which constructed a pseudo spatial panel dataset from a
single observation for every grid cell, each year of the study period.

Using the constructed pseudo spatial panel, nonparametric
bootstrappingwas employed to derive 1000 sample datasets of residen-
tial sales transactions from 2002 to 2013. The repeated balanced panel
datasets were composed of randomly selected observed residential
property sales within the City of Portland, where only one time-
specific property-level sale was randomly selected (with replacement)
for each grid cell with a housing sales transaction. By bootstrapping



Fig. 3. Flow diagram of bootstrapped pseudo spatial panel construction and model fitting.
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regression estimates with a nonparametric approach, any distribution
assumptions concerning the population of residential property sales in
the study area, where such information may not be easily obtained
over a 12-year period, were not required to be met. A hedonic spatial
panel regression model was then fitted in order to predict the housing
sales price of randomly selected residential transactions within the
pseudo panel as a function of internal and external factors. Adoption
of a bootstrap approach enabled estimation of a coefficient mean,
standard error, and p-values resulting from 1000 model estimations
Table 2
Descriptive statistics for full panel of variables in final model specification.

Variable Mean

Sale price (2013$) 285,405.50
Internal

Age 57.70
Bathrooms 1.90
Bedrooms 2.70
Lot acres (ln) 0.10

Neighborhood
Household density 21.60
Land use entropy 38.10
Median income 59,153.00
Percent rented 38.40
Percent white 78.10

Distance
CBD distance 26,538.40
Bike lane distance 2332.80
Local multi-use path distance 9090.90
Regional multi-use path distance 5442.70
Light rail station distance 10,850.10
Streetcar station distance 22,820.90
b1/8 Mile from light rail track (dummy) 0.03
b1/8 Mile from streetcar track (dummy) 0.02
b1/8 Mile from major road (dummy) 0.40

Between 1/8 and 1/4 mile from light rail track (dummy) 0.05
Between 1/8 and 1/4 mile from streetcar track (dummy) 0.02
Between 1/8 and 1/4 mile from major road (dummy) 0.30
Temporal

Years light rail open 13.80
Years streetcar open 3.40
Property sold in 2003 (dummy) 0.10
Property sold in 2004 (dummy) 0.10
Property sold in 2005 (dummy) 0.10
Property sold in 2006 (dummy) 0.10
Property sold in 2007 (dummy) 0.10
Property sold in 2008 (dummy) 0.10
Property sold in 2009 (dummy) 0.10
Property sold in 2010 (dummy) 0.10
Property sold in 2011 (dummy) 0.10
Property sold in 2012 (dummy) 0.10
Property sold in 2013 (dummy) 0.04
(Efron and Tibshyrani, 1993). Fig. 3 shows a flow diagram of the
described modeling approach.

4. Results

4.1. Spatial panel descriptive characteristics

During panel construction, the inflation-adjusted housing sales price
and internal factors describing each single-family and owner-occupied
Standard Deviation Minimum Maximum

144,104.90 25,266.00 1,284,139.00

32.90 0.00 148.00
1.10 0.00 18.00
1.20 0.00 18.00
8.80 0.01 2500.00

10.70 1.40 66.20
25.10 0.00 97.30

23,769.40 11,095.70 204,573.00
15.30 7.50 89.40
14.40 26.10 100.00

10,237.40 1911.20 61,021.40
2797.60 5.30 23,301.40
7568.30 4.00 45,144.50
3367.00 0.00 20,798.10
7328.50 170.30 40,321.30

11,463.20 17.10 56,685.70
0.20 0.00 1.00
0.20 0.00 1.00
0.50 0.00 1.00
0.20 0.00 1.00
0.10 0.00 1.00
0.50 0.00 1.00

8.10 0.00 27.00
2.90 0.00 12.00
0.30 0.00 1.00
0.30 0.00 1.00
0.30 0.00 1.00
0.30 0.00 1.00
0.30 0.00 1.00
0.20 0.00 1.00
0.20 0.00 1.00
0.20 0.00 1.00
0.20 0.00 1.00
0.20 0.00 1.00
0.20 0.00 1.00
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multifamily residence sold over the 12-year study period were spatially
matched to the grid cell network. Similarly, external factors describing
the location, surrounding amenities, and transport scheme of each
grid cell were spatially joined to each sales transaction. Table 2 provides
a descriptive summary of these internal and external factors within the
full panel of 80,182 observations.

The close proximity of most housing sales transactions to bike
infrastructure described in Table 2 is visualized in Fig. 4. The average
Fig. 4. Change in grid-based street network distance to n
residence sold was located two miles from a local multi-use bike path,
one mile from a regional multi-use path, and one-half mile from a
bike lane. Residential properties located near the city center, with its
diverse network of bike facilities, were among the sales observations
with the greatest access to the city's extensive bike network. This
network of bike lanes and local/regional multi-use paths extends across
most city neighborhoods; thus, providing strong bike facility access for a
majority of Portland's housing units.
earest bike facility from 2002 (left) to 2013 (right).
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By contrast, Fig. 5 shows that street network access to light rail tran-
sit and streetcar stations was not nearly as ubiquitous across the city.
The majority of streetcar stations in Portland are located within the
city center; while light rail transit station locations extend outward
from the city center along the region's major arterials. As such, the aver-
age sales transactionwas located over fourmiles froma streetcar station
and two miles from the nearest light rail station.
4.2. Spatial panel model results

The nonparametric bootstrapped estimation results of the hedonic
spatial panel model are shown in Table 3. Final regression results are
based on an averaging of estimated coefficients and standard errors
from the 1000 model estimations. Overall, an increased distance to the
nearest rail station tended to decrease the average housing sales price
in Portland over the 12-year study period. Model estimates revealed
for each additional foot along the street network that a single-family
or owner-occupied multifamily residence was located from the nearest
light rail station, the dwelling unit sold for $0.46 less. By comparison, in-
creased network distance to the nearest Portland Streetcar station had a
much greater negative impact on housing sales price at $4.45 per foot.
Accordingly, the average Portland residence sold between 2002 and
2013 was located 4.32 miles from a streetcar station; thus, a home
Fig. 5. Change in grid-based street network distance to near
situated one-half mile from the nearest streetcar station sold for a
premium of $89,755 due to station proximity, all else held constant.

Regarding the temporal component of housing sales, the length of
time between a rail station's inaugural year of operation and the
observed year of a succeeding housing sale had a significant impact on
a property's realized market value. After controlling for annual fluctua-
tions in the housing market during the 12-year study period, increased
proximity to a light-rail stationwas associatedwith an additional $1361
per year in housing sales price appreciation. Similarly, improved
proximity to a streetcar station was linked to an annual property
value appreciation of $4113. These values reflect an increasing bid
rent for station proximity as the utility of rail station access continues
to gain greater market recognition in the City of Portland.

As for the benefit of improved bike facility access on housing sales,
the findings were divided based on whether the nearest facility provid-
ed off-street or on-street access. Proximity to regional multi-use paths
had a substantial and sustained positive impact on long-term housing
sales prices. A decrease in housing sales price of $0.86 was attributed
to each additional foot the residence was located from the nearest
regional path. For each additional foot in distance that a residence was
located from the nearest off-street local multi-use path, the dwelling
unit sold for $0.01 less. Although, due to additional compounding
factors not fully specified in the model, this distance variable was not
significant. Taken together, the average Portland home sold during the
est rail transit station from 2002 (left) to 2013 (right).



Table 3
Spatial panel model results for bootstrap regression estimates (r = 1000).

Variable
Mean
Estimate

Standard
Error

p-Value

Constant 130,468.902 9520.283 0.000

Internal
Age −27.445 30.844 0.374
Bathrooms 27,836.543 1248.142 0.000
Bedrooms 18,961.730 1017.141 0.000
Lot acres (ln) 32,043.795 1419.476 0.000

Neighborhood
Household density 580.835 78.712 0.000
Land use entropy 171.229 33.764 0.000
Median income 1.807 0.055 0.000
Percent rented −577.072 72.364 0.000
Percent white 836.777 50.651 0.000

Distance
CBD distance −0.558 0.125 0.000
Bike lane distance 2.470 0.378 0.000
Local multi-use path distance −0.013 0.121 0.915
Regional multi-use path distance −0.862 0.189 0.000
Light rail station distance −0.462 0.115 0.000
Streetcar station distance −4.450 0.126 0.000
b1/8 Mile from light rail track (dummy) −24,091.585 3400.697 0.000
b1/8 Mile from streetcar track (dummy) 82,027.396 16,371.040 0.000
b1/8 Mile from major road (dummy) −10,789.912 1703.075 0.000
Between 1/8 and 1/4 mile from light rail
track (dummy) −16,489.798 3147.580 0.000

Between 1/8 and 1/4 mile streetcar track
(dummy) 45,548.206 14,303.923 0.001

Between 1/8 and 1/4 mile from major road
(dummy) −1364.450 1749.410 0.435

Temporal
Years light rail open 1361.427 80.719 0.000
Years streetcar open 4112.991 350.386 0.000
Property sold in 2003 (dummy) 7024.502 3036.970 0.021
Property sold in 2004 (dummy) 58,364.474 3486.357 0.000
Property sold in 2005 (dummy) 99,112.984 3806.547 0.000
Property sold in 2006 (dummy) 118,169.243 3535.974 0.000
Property sold in 2007 (dummy) 98,248.312 3758.736 0.000
Property sold in 2008 (dummy) 69,385.550 3657.399 0.000
Property sold in 2009 (dummy) 45,031.905 3666.662 0.000
Property sold in 2010 (dummy) 28,748.127 3820.637 0.000
Property sold in 2011 (dummy) −1870.970 3889.975 0.643
Property sold in 2012 (dummy) 22,490.074 3402.957 0.000
Property sold in 2013 (dummy) 30,406.756 3262.999 0.000

271T.F. Welch et al. / Journal of Transport Geography 54 (2016) 264–272
12-year study period would have sold for $4541 and $53 less if the
residence was located one mile from the nearest regional and local
multi-use path, respectively.
Table 4
Comparison of findings from past relevant hedonic price studies.

Study Facility type

Al-Mosaind et al. (1993) Light rail transit
Lewis-Workman and Brod (1997) Light rail transit
Chen et al. (1998) Light rail transit
Dueker and Bianco (1999) Light rail transit
This paper Light rail transit

Streetcar
Lindsey et al. (2004) Multi-use paths
Krizek (2006) Multi-use paths

Bike lanes
Asabere and Huffman (2009) Multi-use paths
Parent and vom Hofe (2013) Multi-use paths
This paper Local multi-use paths

Regional multi-use paths
Bike lanes

⁎ Applicable only to houses abutting a trail.
In terms of proximity to an on-street facility, the average Portland
home sold for $2.47 more with each additional foot that the residential
property was located away from a bike lane. While a potentially
counterintuitive finding, the large negative impact of bike lanes on
housing sales price may be attributed to the correlation of this external
factor with undesirable features of a home's location (e.g., noise and air
pollution, traffic safety) that are not fully captured by the specification
of the model's nuisance variables. Many bike lanes are located along
busy roads, several of which serve as major arterials; thus, the effect
of being located near this road facility type would appear to outweigh
the accessibility benefits of a separated, on-street bike lane.

5. Conclusions

This study estimated a hedonic spatial panel model to determine the
long-term impact of improved network access to bike and public transit
facilities on housing sales prices in Portland, Oregon. Findings from this
12-year study revealed a substantial and negative effect of increased
distance to the nearest regional off-street bike facility or rail station on
residential market values. Accordingly, the closer a sold residence was
to a regional multi-use path, light-rail station, or streetcar station, the
greater the structure's observed housing sales price. However, our find-
ings have also shown the residential market benefits associated with an
increased diversification of the transportation network are complex
when the joint influence of these improvements are considered along
with proximity to a major arterial. Case in point: the impact of local
multi-use path and bike lane access on housing sales price was either
negligible or counterintuitive to prior findings in the literature.

Yet, to the best knowledge of the authors, this work represents the
first hedonic price analysis of bike infrastructure to utilize a longitudi-
nal dataset. Additionally, studies of the impact of light rail transit access
on housing sales prices in the oft-studied Portland metropolitan region
and the majority of other locations have typically adopted a cross-
sectional study design or non-spatial longitudinal analytic methods to
measure longer-term trends in the dynamic housing market. Table 4
provides a standardized comparison of this study's findings to the re-
sults of other hedonic price studies that have measured the monetary
impact of proximity to a bike facility or Portland's rail-based transit
network.

Beyond use of a 12-year panel to study a long-term phenomenon,
this research presented a spatial panel modeling approach previously
not implemented in planning studies to identify the contribution of im-
proved access to bike and public transit facilities on housing sales price.
Of the few studies to have employed time series hedonic regression
methods, even when controlling for spatial autocorrelation, most have
been hampered by their short-term measurement of the effect size of
improved facility access. The diversification of a transportation system
Location
Proximity per foot
(2013 $US)

Portland, OR $10.86
Portland, OR $1.21
Portland, OR $14.24
Portland, OR $12.57 to $15.10
Portland, OR $0.46

$4.45
Indianapolis, IN $6.95
Twin Cities, MN Positive effect

No significant effect
San Antonio, TX $3107.64⁎

Miami, OH $4.19
Portland, OR $0.01

$0.86
$-2.47
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through the expansion of rail-based transit and bicycle networks repre-
sents a long-term investment in which the residential market value as-
sociated with an increased proximity to such infrastructure cannot be
accurately portrayed by a single year of observations. The long-term
view of the housing value and non-automotive infrastructure proximity
relationship taken in this study, as well as the new findings highlighted
by an innovative analytical approach, has the potential to better inform
those transportation infrastructure financing mechanisms that rely on
rising property values.

Additionally, this research measured the joint impact of network
access to both bike and public transit facilities on housing sales price.
Past analyses have not simultaneously measured the effect of improved
accessibility to these facilities on housing value, despite growing evi-
dence underscoring a synergistic link between cycling and public transit
(Krizek and Stonebraker, 2010). The prospective for household mem-
bers to substitute one non-automotive travel mode for another may
be viewed as a desirable locational feature for a household purchasing
a new residence. Also, by calculating transportation facility access as
street network distance instead of the commonly used straight-line
measurements or the simple adoption of a series of areal buffer approx-
imations, our study provides a more realistic understanding of how
improved bike and public transit access affects housing values.

While this work presents conceptual and methodological advance-
ments to the literature on hedonic price studies, there are several
study caveats that warrant further clarification and consideration.
First, this study assesses themarket impact of transportation infrastruc-
ture improvement at a regional scale instead of a local assessment
(e.g., corridor) where the external factors of housing market value
may exert a stronger impact. Future efforts should also consider the
addition of economic factors (e.g., land supply, regional market condi-
tions) or other internal (e.g., stories) and external (e.g., school quality,
congestion) factors that were not tested because of limitations in data
availability. Finally, the nonlinear effects of bike and transit facility
proximity also warrants future examination, as recent evidence sug-
gests that, as distance from a public transit station increases, the prop-
erty value benefits for this proximity decrease at an accelerating rate
(Kay et al., 2014; Seo et al., 2014). Nonetheless, despite these consider-
ations and others, this study has addressed many notable methodolog-
ical shortcomings of previous hedonic price studies in finding that
increased access to off-street bike facilities and rail transit stations
has a sustained and often substantial positive impact on residential
property values.
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