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ABSTRACT
The emergence of new shared-use mobility options such as bike-
share and ride-hailing services render the traditional dichotomy
between personal vehicles and public transit somewhat irrelevant.
Transportation planners and policymakers have yet to conclude
whether these mobility technologies are complementing or com-
peting against existing public transit services. The understanding of
this relationship is vital given the increasing uncertainty of funding
sources for transit services, but limited by the scarcity of meaningful
data provided by the private ride-hailing industry. This study applies
big data analytic tools on a unique travel data set to uncover the
predictors motivating a half-billion transit, taxi, and bikeshare trips
in rail station walksheds across Washington, DC. Study findings indi-
cate travel cost and natural environment factors as well as land use
diversity and network connectivity metrics significantly impact the
likelihood for an individual to travel via taxi or bikeshare rather than
rail.
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Introduction

Competition among transportation modes has traditionally been categorized as a choice
between personal vehicles and public transit. Transportation policies that seek to guide
individualmode choice towards public transit or seek to reduce auto-related traffic conges-
tion have generally focused on this traditional dichotomy. Yet, until recently, an evolving
and increasingly meaningful array of non-public transportation options made available to
urban travelers has been commonly unaddressed by these policies. Whilemany individuals
have the option to travel by either public transit or personal vehicle, the rise of the sharing
economyhas opened the doors to non-traditional transportation services that urban policy
has not fully addressed. Whether travelers choose to hail a taxi, temporarily rent a bike, or
summon a shared ride via their mobile phone; these transportation options are becoming
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muchmore prevalent in fulfilling daily urbanmobility needs. What planners and urban pol-
icymakers have not yet figured out is whether these services round out an important mix
of multimodal transportation options or compete directly with public transit services.

Fixed rail transit is a major public investment in the jurisdictions it serves. The extent
to which the aforementioned non-public transportation options compete with traditional
fixed rail systemsmay necessitate additional transportation policy options. If these alterna-
tivemodes are highly complementary, providing a wider breadth of travelers – particularly
those beyond walking distance from a rail station – feasible access to the rail system, then
planners should consider ways to make such services available to a broad variety of poten-
tial users. However, if non-public modes tend to replace rail transit trips, serving travelers
whose origins and destinations are within close proximity to rail stations, urban transport
policy should address the reasons riders choose the non-public mode over rail service.

Transportation options that are competitive with rail service are not likely to funda-
mentally alter public transit system viability; however, under the current regime of his-
torically shrinking public transportation funding, every rider makes a difference. Much of
the research that attempts tomeasure the competitive effects of alternative transportation
modes tend to focus on a restricted number of travel surveys. These studies attempt to
determine the nature of the public transit and non-public transportation service relation-
ship. This type of information is useful, but also limited inwhat it can tell planners about the
motivations that drive underlying travel behavior. In order to better understand the role
of a rapidly expanding slate of alternative transportation modes, a more comprehensive
investigation of the links between the natural environment, built environment, and these
expanding transportation networks with the individual decision process is demanded.

To examine the influence of these described factors on the travel decision-making pro-
cess, this study applies the latest tools in big data analysis on a travel data set collected in
Washington, DC. Specifically, a multinomial analysis is adopted to uncover the predictors
motivating ahalf-billionpublic transit, taxi, andbikeshare tripswithin rail stationwalksheds.
By doing so, we attempt to define a variety of significant factors influencing travelers’ deci-
sion to take alternative modes of transportation to destinations that are easily served by
rail. Our analysis provides valuable insights for planners and decision-makers interested in
directing more trips to their rail transit systems via alterations to the built environment.

Literature review

The rise of ubiquitously available alternative transportation modes has created a new
urban landscape comprised of many options for a traveler to make an intra-city trip. But,
the implications for public transportation brought by the rise of emerging and existing
ridesharing services – the latter of which includes taxi services – has yet to be fully stud-
ied by researchers, practitioners, and policymakers (Austin and Zegras 2012; Kamga, Yazici,
andSinghal 2015;WangandRoss 2017). This notionmaybe somewhat surprisinggiven that
researchers have suggested the importance of rideshare modes in shaping many facets of
urban transportation systems since the 1970s (Kamga, Yazici, and Singhal 2015;Wohl 1975).
In an article dating back to 1975, Wohl suggested that taxis in the US at that time man-
aged to ‘handle almost 40 percent more passengers than do all US rapid transit systems
combined,’ in which he further stressed that taxis even ‘carry about 60 percent as many
passengers as all bus transit systems.’ In a more recent study based on the 1996 and 2001
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Canadian Census, Kattan, de Barros, and Wirasinghe (2010) highlighted the role of taxis in
reducing parking demand in the urban core and providing transportation services to disad-
vantaged populations in areas that had relatively limited transit options (e.g. low income,
senior citizens). Nonetheless, scholarly investigations on taxis and new ridesharing modes
have remained conspicuously sparse compared to the persistent and continuous attention
given to other transport modes (Austin and Zegras 2012; Kamga, Yazici, and Singhal 2015;
Wohl 1975; Qian andUkkusuri 2015). Part of the absence of research in this area is likely due
to a burdensome task of collecting ridesharing trip data through roadside assessments, as
has been conventionally conducted in the past (Yang et al. 2000).

The relatively recent arrival of spatial data sources, which implement GPS tracking sys-
tems on a large number of taxi fleets (and by proxy ride-hailing travel modes) across the
world, has enabled researchers to shed additional light on a variety of aspects pertain-
ing to taxis, and thus further the literature (Kamga, Yazici, and Singhal 2015; Ferreira et al.
2013). Austin and Zegras (2012) categorized the current evidence base on taxis into three
tiers. The first tier focuses on the role that taxis play in addressing the last-mile problem of
other public transportation modes considering that taxi serves door-to-door travel (Qian
and Ukkusuri 2015; King, Peters, and Daus 2012). The second tier focuses on the regulatory
aspects of the taxi industry, while the final tier examines the potential use of optimiza-
tion tools, often through technological means, to enable more efficient taxi operation and
provide more convenient travel for customers.

The inquiry regarding the role of taxis in urban areas tends to center on the relationship
between taxis and othermass transit. In a circumstancewhere taxi services operate in areas
served by public transit, researchers have suggested that taxis would theoretically comple-
ment transit (Design Trust for Public Space 2007; Schaller Consulting 2006). Several recent
empirical studies seem to corroborate that hypothesis, but with some caveats. Using data
of Boston taxi trips, Austin and Zegras (2012) developed fourmodels representing different
times of the day to estimate the impact of distance to the city’s rail and bus routes, while
controlling for built environment and socioeconomicmeasures, on the number of taxi trips
generated within a block group. Their study findings suggest taxis are both complemen-
tary and substitutional to rail transit. Yang and Gonzales (2014) developed multiple linear
regressionmodels representing eachhour of theday to estimate the impacts of population,
transit access time,median age, education level, income, and total number employment on
taxi trips, aggregated to a traffic analysis zone.

Also using New York City taxi data, Qian and Ukkusuri (2015) found that subway acces-
sibility and a set of sociodemographic and built environment factors including education
level, proportion of commercial area, and road density positively correlated with taxi trips
aggregated at a ZIP code tabulation area. The geographically weighted regression (GWR)
used by the authors outperformed their ordinary least squares model, and was thus deter-
mined amore appropriatemethod for dealing with spatial heterogeneity; especially, when
considering the disproportionate share of taxi trips in Manhattan compared to the other
four boroughs.

A third study using New York City taxi data also addressed the relationship between
taxi and transit use (Hochmair 2016). Using a series of nonspatial negative binomial regres-
sion models, the results of this study indicated that the number of taxi trips was positively
correlated with the number of subway and train stations; however, an inverse relationship
was identified between the number of bus stops and taxi trips. The nonspatial regression
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results shouldbe interpretedwith care, though, since the spatially filteredmodel suggested
there was no clear statistical connection between public transit and taxi trips (Yang and
Gonzales 2014).

To further understand the nature of taxi trips and how it relates to transit, Wang &
Ross (Wang and Ross 2017) proposed a categorization of their relationship as transit-
competing, transit-extending, and transit-complementing. Based on 983,053 taxi trips
in New York City, they found that transit-extending trips accounted for 7.64% of the
observed trips while transit-competing and transit-complementing trips accounted for
58.54% and 33.82% of observed trips, respectively. Using binary logit models and con-
trolling for sociodemographic, built environment, and weather data, their study findings
suggest transit-competing taxi trips are likely to decrease during rush hour, indicating that
travelers opted to ride transit in order to avoid the expected roadway congestion during
peak hour. Whereas, transit-extending taxi trips tend to occur in the morning and evening
peak periods and less so in the late night, which may be partially explained by personal
security concerns.

Methods

Data development

Washington, DC is a dense urban city with an extensive public transportation system that
includes heavy rail, commuter rail, and bus networks. Figure 1 provides a map of the study
area identifying the locations ofWashingtonMetropolitan Area Transit Authority (WMATA)
Metrorail stations, a quarter-mile transit walkshed around these stations, and the Capi-
tal Bikeshare stations within the city boundary and the greater metro region. Forty heavy
rail stations, comprising the WMATA Metrorail system, extend across the Washington, DC
metropolitan region. In 2016, an average of over 75,000 daily WMATA Metrorail trips orig-
inated and terminated in the municipal boundary of Washington, DC. Trip-level ridership
data spanning the entire 2016 calendar year was collected for this study, which included
more than one half-billion trips that were aggregated based on day of the year and time
of day. Of these data, 55,427,089 station-to-station trips were completed within the city
boundary of Washington, DC.

Thesedata detailed station-level characteristics including the station identificationnum-
ber, trip entry and exit time, trip travel time, fare payment method, and fare type (full price
or discounted). From these data, a composite distance for each station pair that mirrors
WMATA’s fare policywas calculated by the authors.WMATA’s fare policy applies a distance-
based charge using the average of rail distance and straight-line distance between stations.
Fares are then further distinguished between peak periods (system opening to 9:30am and
3:00pm to 7:00pm) and off-peak periods. Finally, discounted fares for seniors and people
with disabilities represented half of the full fare price.

The city also has an extensive regulated taxi service and expansive bikeshare network.
In this study, these private taxi services were used as a proxy for all hired-ride services (e.g.
Uber, Lyft). Although the authors acknowledge traveler behavior and service usage is likely
somewhat different between these alternatives, a lack of publicly available data covering
private ride-hailing services necessitated the use of the District’s extensive taxi data. In this
study sample, a total of 2,469,592 DC Taxi trips that occurred in 2016 had both trip ends
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Figure 1. Map of WMATA Metrorail Stations and Capital Bikeshare Stations in Washington, DC.

Table 1. Trip Characteristics by alternative travel mode.

Average Average Average
Travel Mode Daily ridership Trip cost Trip distance

WMATA Metrorail 75,706 2.18 3.21
Capital Bikeshare 2039 2.90 1.28
DC Taxi 6710 10.59 1.29

fall within a quarter-mile distance of a Metrorail station. In terms of Capital Bikeshare rider-
ship, there were 740,337 trips in 2016 that both originated and terminated at a biking dock
locatedwithin thedefined transitwalkshed. Table 1 summarizes the averagedaily ridership,
trip cost, and trip distance of the study sample.

After compiling the annual taxi, transit, andbikeshare trip-level datawithinmetro station
walksheds, informationon theminimumandmaximumtemperatures, averagewind speed,
and precipitation for the travel day was appended to each record. The inclusion of these
control variables is posited to help explain non-policy related reasons as to why travelers
might choose or oppose to conduct their travel via taxi or bikeshare rather than rail.

Built environment characteristics and transportation network connectivity is also
expected to influence a traveler’s decisionofwhether or not to takepublic transit or another
form of urban mobility option. To control for these effects, built environment and connec-
tivitymeasures at theblock levelwere calculatedbyusingUSCensus, AmericanCommunity
Survey (ACS), Longitudinal Employer-Household Dynamics (LEHD), and General Transit
Feed Specificastion (GTFS) data. A subset of built and natural environment variables as well
as trip-related attributes explored in this study, reduced to only list those variables that are
specified in the final model, is provided in Table 2.

To account for asmuchof thedecisionprocess as possible absent detailed travel surveys,
we computed all built environment, connectivity, and socioeconomic variables at both the
origin and destination of the trip. Adoption of this strategy allowed formeasurement of the
impact that these variables potentially have on a traveler’s decision to take a travel mode
when conditions at both the start and end of their trip are considered. The intuition here
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Table 2. Variables used in final model specification and associated data sources.

Variable Data Source

Trip cost WMATA, DC Taxi, CaBi
Weekend trip WMATA, DC Taxi, CaBi
Trip during Metrorail operating hours WMATA, DC Taxi, CaBi
Network trip distance WMATA, DC Taxi, CaBi
Rain during travel day NOAA
Mean temperature on day of trip NOAA
Mean wind speed on day of trip NOAA
Activity density (origin/destination) ACS, US Census, LEHD
Employment-population balance (origin/destination) ACS, US Census, LEHD
Land use entropy (origin/destination) ACS, US Census, LEHD
Intersection density (origin/destination) OpenStreetMap
Cul-de-sac density (origin/destination) OpenStreetMap
Link density (origin/destination) OpenStreetMap
Connected node ratio (origin/destination) OpenStreetMap
Beta index (origin/destination) OpenStreetMap
Network distance to nearest bus stop (origin/destination) OpenStreetMap

is that should a traveler live and work within a quarter-mile walkshed of a rail station, and
their residence is located in an area with a well-connected transportation network, a lack of
density at the work end of the trip may be the major factor that resulted in a taxi trip.

Analytic approach

In this study, small samples of detailed travel diaries were substituted with very large sam-
ples of detailed trip and environmental data. To isolate trips that directly compete with rail
transit, only taxi and bikeshare trips with both their origin and destinationwithin a quarter-
mile areal buffer around a rail station were selected. This subset of trips represented those
that may be considered easily completed via rail with a short walk to and from a rail station
on both trip ends.

To measure the impact that these trip-related and contextual variables have on an
individual traveler’s decision to use a new shared-usemobility option over public rail trans-
portation, a non-linear multinomial logistic (MNL) regression-based approach was utilized.
The MNL approach enabled a comparison of the impacts that changes in the mode spe-
cific characteristics and environmental factors have on the probability that a trip between
two station areas will occur by a given mode. An MNL modeling approach examines the
relative probabilities of a given outcome when that outcome has more than two alterna-
tives. In this study, those trips that occur across three modes (WMATA Metrorail, taxi and
bikeshare) were examined. To measure the probability that a given mode will be selected,
the probability that traveler (i) will select a given mode (j) was modeled, represented in
Equation (1).

σij = Pr{Yi = j} (1)

For example, σitaxi would be the probability that the i-th traveler took a taxi for their
trip. Since each mode is mutually exclusive, as only unlinked trips were examined,

∑J
j =

1, σij = 1 for each i (the probability for each traveler sums to one). Our data is based on
individual trips for each mode. For these data, ni = 1 (the number of modes a traveler can
take per unlinked trip) and Yij is transformed to a dummy variablewith the value of 1 if the i-
th traveler selected the j-themode and 0 otherwise. Following themutually exclusive travel
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mode requirement,
∑

j yij = 1, because one of the dummy variables yij can take the value
of 1 for each trip.

The resultingmodechoiceprobability distributionof allYij for the totalni is amultinomial
distribution of the form given in Equation (2).

Pr{Yi1 = yi1, . . . , YiJ = yiJ} =
(

ni
yi1, . . . , yiJ

)
σ
yi1
i1 . . . σ

yiJ
iJ (2)

To model this multinomial mode choice distribution, we assume the log-odds of each
mode choice outcome follows the non-linear model of Equation (3). Here, log-odds rep-
resent the log transformation of odds which itself is simply the probability of a traveler
selecting a specific mode.

μij = log
σij

σiJ
= αj + x′

i
βj (3)

where αj is a constant, x′ is a vector of independent variables and βj is our vector of
regression coefficients, for j = taxi, bikeshare, . . . , J – 1, .

Metrorail was chosen as the reference case for this MNL analysis to permit a comparison
of the choice probabilities of this alternative with the modal decision to choose either taxi
or bikeshare. The ability to estimate the effect of trip-related and contextual factors on an
individual’s decision to select amode other thanMetrorail for travel between two locations
was of particular interest in this study. AnMNLmodeling framework also allowed a compar-
ison of the impact of individual determinates on the probability of one outcome occurring
over another. In other words, the model predicts the change in probability that a traveler
will choose either a taxi or bikeshare trip over a rail transit trip for each unit change in the
corresponding independent variable. The relative risk or odds ratio of each mode along
the vector of dependent variables, derived by the exponentiation of each regression coef-
ficient (exp(βj)), is also reported. This calculation provides an elasticity-like term describing
the likelihood that a given traveler (i) will choose a mode (j) over our reference mode of
WMATA Metrorail given a one unit change in the corresponding independent variable.

Results

Of the trips for the three travel modes that originated and terminatedwithin a quarter-mile
of a Metrorail station, the majority were conducted by rail. However, a significant number
of trips are assumed to have occurred in these locations on modes other than rail. Table 3
describes thevariablesused in theMNLanalysis. In total, 16 variableswere selected to repre-
sent themost important trip-related, natural environment, built environment, and network
factors that influence alternative travel mode choice.

The results of our MNL model analysis provide the increasing or decreasing likelihood
that a trip will occur by a travel mode other than WMATA rail, for each unit change in the
underlying variable. Table 4 shows the model results, indicating that all variables were sig-
nificant to the 99thpercentile confidence interval. These factors are all significant due to the
large amount of data used to estimate the non-linear MNL model, which sought to assess
the probabilities that a traveler will select one mode over another.

The cost of the trip or ‘fare’ was a significant determinant of whether a traveler will select
rail, whenmodal access is strong, rather than an alternative mode. Model results show that
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Table 3. Descriptive statistics of sampled trips (n = 4,837,099).

Variable Mean St. Dev. Min Max

Trip cost 6.61 5.36 0.01 74.97
Weekend trip 0.23 0.42 0.00 1.00
Trip during Metrorail operating hours 0.96 0.20 0.00 1.00
Network trip distance 2.31 2.14 0.00 13.33
Rain during travel day 0.02 0.16 0.00 1.00
Mean temperature on day of trip 60.64 16.72 20.00 91.00
Mean wind speed on day of trip 8.81 3.27 0.00 23.00
Activity density (origin) 157.39 158.07 0.00 600.00
Activity density (destination) 152.98 154.91 0.00 600.00
Employment-population balance (origin) 317.33 572.52 0.00 3467.00
Employment-population balance (destination) 299.02 555.49 0.00 3467.00
Land use entropy (origin) 0.53 0.15 0.00 0.81
Land use entropy (destination) 0.53 0.15 0.00 0.81
Intersection density (origin) 6.84 6.05 0.00 45.86
Intersection density (destination) 6.84 6.20 0.00 45.86
Cul-de-sac density (origin) 0.42 1.53 0.00 10.79
Cul-de-sac density (destination) 0.43 1.55 0.00 10.79
Link density (origin) 18.10 16.15 0.00 102.52
Link density (destination) 17.96 16.44 0.00 102.52
Connected node ratio (origin) 0.85 0.35 0.00 1.00
Connected node ratio (destination) 0.85 0.35 0.00 1.00
Beta index (origin) 2.24 1.10 0.00 5.00
Beta index (destination) 2.21 1.09 0.00 5.00
Network distance to nearest bus stop (origin) 0.12 0.12 0.00 0.89
Network distance to nearest bus stop (destination) 0.12 0.12 0.00 0.89

when considering Metrorail or taxi, a traveler is 12 times more likely to take a taxi for each
dollar that the WMATA fare increases. Similarly, a traveler is five times more likely to use
bikeshare for each dollar increase in WMATA fares. Weekend travelers are about 30%more
likely to take WMATA Metrorail over bikeshare and 50% less likely to take a taxi. This pro-
vides an indication that, at least on weekdays, taxis are more likely to be competitors to rail
transit, particularly when the cost of the taxi trip compares favorably.

The idea that rail trips primarily serve as a commute-based mode while our two alter-
native shared-mobility modes compete directly for other trip purposes is reinforced by
Figure 2. The graphic shows the distribution of trips by mode and time of day. During peak
periods rail is the dominate mode, but bikeshare and taxi are heavily concentrated in the
urban corewhere employment entropy is high. Evening off-peak trips occurring in the core
are highly centered towards taxi trips, while the light rail usage tends to be more spread
out across the study area.

Trip distance also plays a significant role, with travelers about 70% and 85% less likely
to take bikeshare and taxi, respectively, with each mile increase in trip distance. Bikeshare
riders are more likely to take rail as trip distances increase, showing the significant impact
an additional mile of peddling has on riders. Taxis are dramatically less attractive than rail
for each additional mile of travel which is likely a result of the high cost associated with this
mode.

In terms of the impact of weather on mode choice, model results indicate that travelers
are about 40% less likely to use bikeshare on days with measurable rainfall, but 1.5%more
likely to cycle for each degree increase in mean temperature. Wind speed seems to have a
marginal effect on the decision to use either of the alternative modes.
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Table 4. Multinomial logistic regression (MNL) model results.

Reference Case: Metrorail

Alternative Mode Choice: Bikeshare Taxi

Independent Variable Coefficient Coefficient

(constant) 0.001 0.000
Trip cost 5.537 12.697
Weekend trip 0.724 0.525
Trip during Metrorail operating hours 1.495 0.400
Network trip distance 0.318 0.157
Rain during travel day 0.635 0.742
Mean temperature on day of trip 1.015 0.998
Mean wind speed on day of trip 0.991 1.003
Activity density (origin) 1.000 1.002
Activity density (destination) 1.001 1.002
Employment-population balance (origin) 1.000 1.000
Employment-population balance (destination) 1.000 1.000
Land use entropy (origin) 34.462 17.606
Land use entropy (destination) 53.886 28.614
Intersection density (origin) 1.149 1.030
Intersection density (destination) 1.180 1.093
Cul-de-sac density (origin) 0.766 0.808
Cul-de-sac density (destination) 0.728 0.757
Link density (origin) 0.951 0.980
Link density (destination) 0.944 0.962
Connected node ratio (origin) 4.060 4.338
Connected node ratio (destination) 2.700 3.232
Beta index (origin) 0.883 0.955
Beta index (destination) 1.013 1.054
Network distance to nearest bus stop (origin) 4.945 13.306
Network distance to nearest bus stop (destination) 7.160 15.453
Interaction Variables
Activity density (origin * destination) 1.000 1.000
Employment-population balance (origin * destination) 1.000 1.000
Land use entropy (origin * destination) 0.003 0.003
Intersection density (origin * destination) 0.997 0.998
Cul-de-sac density (origin * destination) 1.008 1.023
Link density (origin * destination) 1.000 1.000
Connected node ratio (origin * destination) 0.810 0.665
Beta index (origin * destination) 0.923 0.930
Network distance to nearest bus stop (origin * destination) 0.002 0.000
Model Summary
Akaike Information Criterion (AIC) 2,559,070

Notes: All independent and interaction variables significant at p < .01 level.

While the natural environment determinants of mode choice are important to recog-
nize, a primary objective of this study is to uncover environmental factors that plannersmay
perceivably alter to encourage travelers to adopt public transit over alternative non-public
modes. Accordingly, this study examined the influence of three land development mea-
sures and six network connectivity measures, specified at each trip end, on mode choice.
Activity density and employment-population balance had virtually no influence on a trav-
eler’s decision to take an alternative mode; however, employment entropy at both ends of
the trip had an outsized impact on mode choice.

Travelers are about 34 to 53 times more likely to choose bikeshare over rail as the diver-
sity of employment options increased. We attribute this effect to the increased level of
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Figure 2. Trip Distributions by Time Period Across Travel Modes in Washington, DC during September
2016.
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accessibility, which means travelers could accomplish multiple tasks within a more con-
fined geographic area rather than necessitate travel by rail to conduct activities that are
more spatially separated. There is a slightly smaller impact for taxis, with travelers about 17
to 28 timesmore likely to choose a taxi when the origin or destination have a highly-diverse
set of employment options. The tendency for travelers to favor alternativemodes over pub-
lic transit when the diversity of employment opportunities is higher likely indicates that rail
serves amore limited set of travel purposes. Commute trips are primarily conducted by rail,
while travelers may prefer shared-ride modes when conducting non-work travel.

In regard to network connectivity, intersection density at the destination was a signif-
icant determinant of a traveler choosing a travel mode. While there is a slight increase in
bikeshare and slight decrease in taxi trips when intersection density at the origin increased,
themodal decision is primarily influencedby the characteristics of thedestination. Travelers
are about 10%more likely to take bikeshare with each unit increase in intersection density
at the destination and about seven percent more likely to take a taxi. The results indicate
that higher rail is less attractive when the destination has a higher density road network.
Link and cul-de-sac density both increase the likelihood that travelers will take transit while
the connected node ratio, a measure of the ratio of three- and four-way intersections to all
intersections, also pushes individuals away from transit and toward alternative shared-use
travel modes.

Finally, the potential interaction between origin and destination variables was modeled
to determine which trip end characteristic had a stronger impact on the decision-making
process. Generally, the same factor at either end of the trip had an equal influence onmode
choice with notable exceptions for land use entropy and the connected node ratio. As
described above, travelers were much more influenced by greater land use diversity and
a traditional gridded street pattern at the destination end of their trip.

Conclusions

The presence of alternative shared-use travel options such as bikeshare, taxi, and ride-
hailing services (e.g. Uber, Lyft) appear to compete with transit, but are not likely to fun-
damentally alter the viability of public transit systems. However, as the funding resources
for public transportation services continue to shrink at a staggering rate, the retention of its
ridership is more important than ever to maintaining the vitality of transit systems. There-
fore, it is critical for planners and transport policymakers to better understand the reach of
these non-public transportation options. This study investigated the role of the built envi-
ronment, natural environment, and other contextual factors in influencing an individual’s
decision to use bikeshare or taxi services for travel between activity locations adequately
served by transit. In doing so, a multinomial analysis was conducted on a big data set of a
half-billion transit, taxi, and bikeshare trips conducted within Washington, DC.

Study findings confirmed that travelers of public transit and emerging shared-usemobil-
ity options are cost sensitive. Results revealed that when considering rail or taxi, a traveler is
18 timesmore likely to take a taxi for each dollar that theWMATA fare increases. Similarly, a
traveler is seven times more likely to choose bikeshare rather thanMetrorail for each dollar
increase in transit fare. From the built environment perspective, travelers appear to favor
alternative modes over rail when job diversity is high. In addition, fewer roads and cul-de-
sacs, particularly in relationship to the number of intersections, make shared-use mobility
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modes more attractive than rail transit. These findings are likely an indication that rail is
more often chosen for commute trip purposes, while shared-use modes may be preferred
when travelers are conducting non-work-related tasks.

While these factors are influential in mode choice decisions, planners and policymakers
can modify policies that influence the factors that impact public transit ridership. Offering
transit service that is more conducive to a range of activities rather than catering to com-
mute trips will make rail relatively more attractive to riders. In turn, the continued work in
reducing the prevalence of cul-de-sacs and instituting policies that reduce the number of
road links in the network may encourage the adoption of alternative travel modes such as
bikeshare. The establishment of greater efficiencies in the built environment, rather it be
via diversifying the types of locations near a rail station to better serve a range of activities
or by enhancing the network connectivity in a station area, carries the prospect of ensuring
that rideshare modes are either extending or complementing existing rail services.
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